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ABSTRACT
A long standing puzzle in the Capital Asset Pricing Model (CAPM) has been the inability of

empirical work to validate it. Roll (1977) was the first to point out this problem, and recently, Fama and French
(1992, 1993) bolstered Roll’ s original critique with additional empirical results. Does this mean the CAPM is
dead? This paper presents a new empirical approach to estimating the CAPM. This approach takes into
account the differences between observable and expected returns for risky assets and for the market portfolio of
all traded assets, as well as inherent nonlinearities and the effects of excluded variables. Using this approach,
we provide evidence that the CAPM isalive and well.
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1. Introduction

The Capital Asset Pricing Model (CAPM) of Sharpe (1964), Lintner (1965), and Black (1972) in its
various formulations provides predictions for equilibrium expected returns on risky assets. More specificaly,
one of its formulations states that the expected excess return over the risk-free interest rate of an asset (or a
group of assets) equals a coefficient, denoted by $, times the (mean-variance efficient) market portfolio’s
expected excess return over the risk-free interest rate. Thisrelatively straightforward relationship between
various rates of return is difficult to implement empirically because expected returns and the efficient market
portfolio are unobservable. Despite this formidable difficulty, a substantial number of tests have nonethel ess
been performed, using a variety of ex-post values and proxies for the unobservable ex-ante variables.
Recognizing the seriousness of this situation quite early, Roll (1977) emphasized correctly that tests following
such an approach provide no evidence about the validity of the CAPM. The obvious reason is that ex-post
values and proxies are only approximations and therefore not the variables one should actually be using to test
the CAPM. The primary purpose of this paper isto provide a new approach to testing the CAPM that
overcomes this deficiency.

Recently, Fama and French (1992, 1993) conducted extensive tests of the CAPM and found that the
relation between average stock return and $ isflat, and that average firm size and the ratio of book-to-market
equity do agood job capturing the cross-sectional variation in average stock returns. These findings suggest,
among other things, that aformal accounting of the effects of “excluded variables” may resurrect the CAPM.
Thiswill be the central issuein this paper.

According to Fama and French (1993), some questions that need to be addressed are: (i) how are the
size and book-to-market factorsin returns driven by the stochastic behavior of earnings? (ii) how does
profitability, or any other fundamental, produce common variation in returns associated with size and book-to-
market equity that is not picked up by the market return? (iii) can specific fundamentals be identified as state
variables that lead to common avariation in returns that is independent of the market and carries a different
premium than general market risk? This paper attempts to answer these questions.

In an interesting article, Black (1995) gives three theoretical explanations of the measured flat line



relating expected return and $: (i) mismeasuring the market portfolio, (ii) restricted borrowing, and (iii)
reluctance to borrow. Even if such reasoning is correct, we have found that the relation between the observed
counterparts of expected return and $ is nonlinear. Finally, we shall provide some answers to questions posed
by Black (1995) concerning the future prospects of the CAPM: (i) will the line be flat in the future? (ii) will it
be steep asthe CAPM saysiit should be? and (iii) will it be flatter, but not completely flat?

First, the CAPM is modified to take into account the differences between expected and observable
returns and between the market portfolio and its proxy. In this modified model, $ is not required to be a
constant, but instead is permitted to vary. Second, the effects of excluded variables and departures from alinear
functional form are taken into account. Third, al the modifications are then expressed in terms of observable
variables. Finally, the coefficients on the observabl e regressors are modeled as stochastic functions of the
variables that Fama and French (1992) include in their test of the CAPM and find to have reliable power in
explaining a cross-section of average stock returns. Once this has been done, the resulting model is estimated
using datafor 10 stock portfolios formed on the basis of both firm size and the ratio of book-to-market equity.
(This procedure of forming portfolios was originated by Fama and French (1993).)

The specific model to be estimated is devel oped in Section 2. The issue regarding what congtitutes a
reasonable inference based upon this model is addressed in Section 3. A brief description of the data used to
estimate the model is presented in Section 4. Section 5 discusses the empirical results and their applications.

Section 6 contains the conclusions.
2. Interpreting and Extending the CAPM

2.1 A brief description of the model

The CAPM may be expressed as
Erie = e = S BNy T (@)
where Er;, isthe (subjective) expected return on an asset (or agroup of assets) an investor choosesto hold,

Er,,, isthe (subjective) expected return on the mean-variance efficient market portfolio, r, istherisk-free

rate, i indexes assets or groups of assets, t indexestime, and $,, isequal to theratio of the covariance



between r;, and r,., denoted by cov( r,,, r,,) ., andthevarianceof r,,, denoted by Fﬁ. (Alternative

me? me?

definitions of $, are provided in Ingersoll (1987, pp. 92, 124, and 134) and Constantinides (1989).) Thetime
variability of this variance and covariance impliesthat $, istime varying. It isimportant to note that asin the

caeof Er,, and Er,,, both cov(r,,, r,) ,ad Fﬁ are the moments of a subjective distribution.

Mt
Homogeneous expectations or beliefs are not assumed here by allowing the subjective distributions to be
different for each and every investor.
2.2 Some problems with the CAPM

A difficulty with empirically testing whether $,, is significantly different from zero in equation (1),
from a statistical standpoint, isthat it represents a statement about expected returns, which are not observable.

To transform the relationship into observable variables for testing purposes, we introduce the following two

equations relating observable returns to expected returns:

-
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where r, and r,, arethe observable returns, and v, and v, arerandom variables. These latter variables
will be distributed with zero means only if the data-generating processes and subjective processes of returns

possess the same means. Substituting equations (2) and (3) into equation (1) yields

Fie = Tee = Siel Ny ~ T+ Vi “)
where $j¢ = $,[1 - —__].
Mt ft
Although equation (4) is not expressed in the form of an errors-in-variables model, it reduces to such
amodel! if themeans of v, and v,,, arezero and $,, isaconstant. Models possessing these properties have
been extensively studied in statistics and econometrics literature (see Lehmann (1983, pp. 450-451)). Asit
turns out, estimation of equation (4) when it is not restricted as an errors-in-variables model is relatively

straightforward, as will be shown in the next section. Furthermore, the now classic “Roll’s (1977) critique” of



tests of the CAPM noted earlier does not apply to the estimation of equation (4) because v,,, accounts for any
differences between the “true” (unobservable) market portfolio and the particular portfolio that is chosen as a
proxy. Further, v, is permitted to have a non-zero and time-varying mean to cover situations where these
differences are systematic and time varying. The presence of v, in equation (4) makes the effects of
mismeasurements noted by Black (1995) explicit, although equation (3) indicates that r,,, isagood proxy for
Er,,, only if themean of v, is zero.

Even if the mismeasurement issue is resolved, equation (4) may nonetheless still be criticized insofar
as important regressors are excluded. For example, no asset is perfectly liquid because all trades required to
convert assets into cash involve some transaction cost. As aresult, investors may choose to hold more liquid
assets with lower transaction costs than otherwise. If so, an illiquidity premium should be taken into account.
This can be done by alowing for trading costs to enter the right-hand side of equation (4) (see Amihud and
Mendel son (1986)). Other potentially important variables, excluded from equation (4), are discussed below.

Another issue in the CAPM iswhether investors face only onerisk arising from uncertainty about the
future values of assets. In al likelihood, investors face many sources of risk, as shown by Merton’s (1973)
inter-temporal asset pricing model. In such instances, investors would supplement the market portfolio with
additional positions in hedge portfolios to offset these risks. Thisresultsin separate $;,S and risk premiums
for every significant source of risk that investorstry to hedge. Equation (4), therefore, should be extended to
account for the effects of extra-market hedging transactions on equilibrium rates of return. Such an expanded
version of equation (4) would recognize the multidimensional nature of risk and thereby show that some
important regressors are necessarily excluded from equation (4).

2.3 A generalization of the CAPM

Including previoudly excluded regressorsin equation (4) is not trivial because the functional form of

the relationship between them and the dependent variable is unknown. This difficulty is resolved in principle by

modifying equation (4) asfollows:

it e = SNy — M)+ Vi + E -ijeijv A)
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where the X, ¢ represent excluded variables, the ., jt denote their coefficients, and m denotes the number of
excluded variables. Since m cannot be known with certainty, one may assume without restricting it to be equal
to a specific number that the regressors of equation (5) form a sufficient set in the sense that they exactly
determine thevaluesof r,, - rg inall periods.

Asagenerd rule, by allowing al the coefficientsin alinear equation to be different for each and every
observation, the equation is permitted to pass through every data point and hence it coincides, for certain
variationsin the coefficients, with the actual process generating the data on its dependent variable. Because of
thisrule, equation (5) provides the only reliable way to capture unknown functional forms without relying upon
strong prior information. One may assume that the coefficients of equation (5) are constants only when this
equation is known with certainty to be linear. In contrast, with varying coefficients, equation (5) istruly
nonlinear.

Obvioudly, equation (5) cannot be empirically estimated if the data on the X, j¢ aenot available.
What is not so obviousis that when the X, jt aenot observable, one cannot prove they are uncorrelated with
(r

we Vo) (Se€Pratt and Schlaifer (1984)). An approach for resolving  this problem is to avoid making such

uncorrel atedness assumptions and assume instead that

Xije = Roije * Rugjell Mg ~ T 3 =1,2,...,m, (6)

where R, jt isthe portion of X; jt remaining after the effect of the variable (r,,, - rg) hasbeenremoved.

Accordingly, evenif thevariable ( r,, - rg,) iscorrelated with the x; it it can nonethel ess be uncorrel ated

with the remainders, R Also, for certain variationsin R and R equation (6) exactly coincides with

oijt-’ oijt lijt’

the true relationship between the X, jt and (r,, - rg) ,if suchareationship exists. Once again, however,
one cannot assume the R ; jt and R; j¢ e constants unless equation (6) is known with certainty to be linear.
Equation (6) should be recognized as an auxiliary equation, alinear form of which has been used to analyze the
effects of excluded variables in the econometrics literature (see Greene (1993, pp. 245-247)). Since this
equation does not impose any constraints on the coefficients of equation (5), it does not prevent the latter
equation from coinciding with the true relationship between the variables. Substituting equation (6) into

equation (5) yields



Fie = Tre = Gie * Gl Fye — Ted )

m

m
where (¢ = (Vi * JZ; -ijtRoije) Ad (e = (S5 + JZ; -ijeRaijo) -

The coefficient, (,;,., hasarelatively straightforward economic interpretation. It consists of three

$..V,
parts, the “true” beta, $,, of the CAPM, amismeasurement effect, -—= "t and an omitted-variables

r
m vt ft
bias, Y - ijtR1ije- Moresothan the“true” beta, the omitted-variables bias changes over time because the set
i1

of excluded variables undoubtedly changes quite frequently, lending further real-world, economic plausibility
to time variability of (,;,. Similarly, the connection of (;, with the intercepts of equations (5) and (6)
clarifiesits real-world origin.

The preceding discussion proposes the introduction of varying coefficients and auxiliary equations
into the estimation procedure as an important approach to dealing with unknown functiona forms and the
effects of omitted variables. Equation (7) provides a useful formulation that does not suffer from various
specification errors when testing the CAPM, and it avoids such serious errors by not relying on any definitions

of (4;¢ @d ;¢ Other than those provided by equation (7).*
3. Econometric Underpinnings of the Extended CAPM

Estimation of equation (7) requires specific stochastic assumptions about (,;, and ( ;- The
permissible set of assumptionsis, however, restricted. For example, one cannot assume that (;, isaconstant
because doing so would contradict the assumption that v, , isarandom variable, even ignoring any variations
in $,, and any omitted-variable bias. In addition, the fact that (,;, dependson (r,, - rg) via$;, and
(oir @d (; arefunctions of the common set of time-varying coefficients ., jt prohibits one from assuming
that the variables (j;4, (43¢ @d (1, - Fg) aeuncorrelated with one another. (Remember that the

nonlinearitiesinvolved in equation (5) cannot be captured without the time-varying . ; jt .) In other words, one

The main difference between this approach and the previous
approaches to estimating the CAPM lies in equations (3)-(6) which do not
appear in the latter approaches (see Jagannat han and Wang (1996) and the
previ ous studies by Harvey, Shanken and others referred to therein). The
linear | east squares residuals introduced in these previous studies
cannot represent neasurenent errors and the effects of omtted variables
(see Pratt and Schlaifer (1984, p. 11-12)).
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cannot assumethat E[ (r;, — Fe) | (N — Mg ] = + $(ry,, - rg) ,where ™ and $ are constants,
without contradicting the definitions of (;;, ad (;,- Thisargument lies at the heart of Roll’s (1977)
criticism of earlier tests of the CAPM. In principle, generaizing the set of assumptions about (;, and ;¢
can help in this respect. The reason is that general assumptions are more likely to encompass true assumptions
as specia cases than more restrictive assumptions. We shall proceed therefore by weakening the assumptions
about (o5 and (g5

Suppose that r;, refersto the rate of return on thei-th group or portfolio of assets. Then

Jj=1
r;je isequal to re, and w;;, isthe proportion of theinvestor's total budgets allocated to the j-th asset. It

n
e = E Wil ije where Fijt isthe rate of return on the j-th asset included in the i-th portfolio, one of the

follows that the variance of r;, is

=]

n
f- 3

n
2
w...w. cov(r.., I. + Wiievar(ry..),
J=1k= ijtlikt ( ijt |kt) le ijt ( ut) (8)
i

=~

where var( r, jt) denotesthe variance of r, jt and cov(r r,.) denotesthe covariance between

ijv
e and Ky

Thevariance of r,, can also be obtained directly from equation (7). Itis

F; = var( GielNye = Ted) +var( (o) + 260V( G G Mye — el ) - ®

Equation (9) eases the computational burden compared to equation (8) because the latter equation
involves alarge number of variances and covariances that may be time varying and cannot be estimated unless
one knows how they vary over time even if the data on all n securitiesin equation (8) are available. However, it
does not have the advantage of parsimony (in terms of a preference for amodel with fewer parametersand in
all other respects amost as good as other competing models) if these two equations yield different values for
the same variance F3. One should, therefore, consider the conditions under which the same values would be
obtained. Suppose that the third term on the right-hand side of equation (9) is zero. Suppose also that the

covariances and variances given in equation (8) are attributableto ( I, - rg) and other specific variables,



respectively. In this case, the first and second terms on the right-hand side of eguation (9) can be equal to those
on the right-hand side of equation (8), respectively. If, in addition, the first and second terms on the right-hand
side of equation (8) tend to nonzero and zero, respectively, as n - «, then thefirst and second terms on the
right-hand side of equation (9) can be defined to be the systematic (or nondiversifiable) and nonsystematic (or
diversifiable) risk components of the portfolio variance, respectively (see Swamy, Lutton and Tavlas (1995)).
These definitions are more comprehensive than the corresponding definitions found in the finance literature
because, as has been shown above, equation (7) captures all sources of risk whereas equation (1) captures only
one such source.

Using a specific model for testing the CAPM, following Fama and French (1993), the third term on
the right-hand side of equation (9) can be zero under the following general Assumptions| and I1:

Assumption |. The coefficients of equation (7) satisfy the stochastic equation

‘(it = AZg * it (10)

where _(it denotes the two element column vector ( (,;,. (;,) /3 A denotesthe 2x7 matrix [ Bl . k=01,
j=0,1,..,6; z;, denotesthe seven element column vector

/
(1, Zy e Ziger Zistr Ziatr Zistr Zietd)

z =thelog of average size over all firmsin thei-th portfolio (afirm'ssizeis equa to its market equity,

il, t-1
ME = astock’s price times shares outstanding, for June of year t-1),

z = the average of book-to-market ratio over all firmsin the i-th portfolio ( afirm’s book-to-market ratio

i2,t-1
isequal to its book equity, BE = book value of its common equity as measured by Fama and French (1993, p.

11), for thefiscal year ending in calendar year t-1, divided by its market equity, ME, in December of t-1),

Z;3 v, = thedividend price ratio (dividend/price) for the S&P 500,

Z;, v 1 = thedefault premium (Moody’s Baa bond rate minus Moody’ s Aaa bond rate),

Z;5 v 1 = theyield on the 10-year Treasury bill minusthe 1-year Treasury hill rate,

Z;s ¢ 1 = adummy variablethat is 1in January and O in other months?, and - denotes the two element

column vector ( 2150 | that

70it
satisfies the stochastic difference equation

it M—’-i,t—l * e (11)

*The variable z,, ., proxies for the January effect which is
expl ai ned in Bodi e, Kane and Marcus (1993, pp. 380-381).

9



where M denotes the 2x2 diagonal matrix di ag(N,, N,;) with -1 < N N,, <1and

00’ 11

a;, = (ay;p @;y  isdistributed with mean zero and variance-covariance matrix F;i)a = Fi[ *kja] , k=

0,1j=0,1

Note that Assumption | permitsthe v, and v, , of equations (2) and (3) to have nonzero and time-
varying means. Fama and French (1992, 1993) found that the current values of z,, have reliable power to
explain the cross-section of average returns, even though their chosen variables do not appear directly in the
CAPM. They also found that stock risks are multidimensional and the elements of z,, proxy for different
dimensions of risk. As discussed earlier, the coefficients of equation (7) capture the multidimensiona nature of
risk. For all these reasons, equation (10), relating the coefficients of equation (7) to z,, isan appropriate
specification.

Assumption Il. The (r,,, - rg) areindependent of the 2, givenavaueof z,,.
This assumption is weaker than the assumption that the (I, - ) areindependent of the (;, (see Dawid
(1979, p. 5)) and both of Assumptions| and |1 are weaker than the assumptions made by Jagannathan and
Wang, Harvey, and othersin testing the CAPM.

The variables, denoted by z,,, are called * concomitants' in Pratt and Schlaifer (1988) and form a
sufficient set of regressors for equation (10) if they completely explain al the variationin ( ;. Algebraically,

this condition can be expressed as

[N | =0o0r 1, *,. =*0a = *1a =0, Bkj¢0for k=0, 1and j # 0. (12)

la

Theimplication of these conditionson M and ) isthat the distribution of isdegenerate. If itis

71it

degenerate and if the expectation of giventhevauesof z,, and (I, - rg) ,iszero, asimplied by

70it’
Assumptions| and |1, then the third term on the right-hand side of equation (9) is zero given avaueof z,,,
and model (7) reducesto aregression model with first-order autoregressive errors. In this case, the usual

consistency proofs apply to Swamy, Mehtaand Singamsetti’ s (1995) parameter estimators of model (7).

%The conjunction of Assumptions | and Il and restrictions (12) is
weaker than the assunptions given in Greene (1993, pp. 375-9) for the
consi stency of instrumental variable estinmators (see Pratt and Schlaifer
(1988, pp. 47-48)).
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Under Assumptions| and 11,

E

[$it $|t(r rﬁ) +J21 ijt 1I_]t) |t} - { 10 EBl_] ij, t-1 E( ’1it| Zit) ) (13)

If the sum of the second and third terms on the left-hand side of this equation is equal to the sum of the second
and third terms on its right-hand side and E( $,,| z,,) isacongtant, then E( $,,| z;,) = B,,. Thus,
Assumptions | and Il can aid in the estimation of the conditional mean of $,, inthe origind CAPM, given z, .

Evenwhen E( $;,| z,) = By,

T 6
the conditional mean B, + %Z} Z; 15Zij t1 is preferableto B, , asameasure of the risksinherent in the
1 T
i-th asset (or group of assets) if E( th:; Itﬁ| z,,) isequal to —E E( ., 2,0, since

equation (5), unlike equation (1), coversall sources of risk. For large T, the mean

T 6
%;JZ; By;Zij.va if _E (. convergesin probability to

L T
E(2) (;d ;) andif both E( iy s
Tt:l T

& th ft)

.
13 (e will beequal o B, +
TiA
| th) and 1 E E( ’1It| th) tend to zero as
T - .

Estimation of equation (7) under Assumptions | and I1 is performed with and without the restrictions

that*

Bkj:Ofork:O,landj¢O. (14)

These restrictions, when imposed, eliminate the time-varying z' s from equation (10).
Note that Assumption | does not permit the restrictionson M and ) givenin (12) to be exactly

satified. They can only be nearly satisfied if the estimates of M and ), are equal to the boundary values

“Equation (7) is estimated under Assunptions | and Il, using a
conput er program devel oped by |-Lok Chang and Stephen Taubman. This

program uses an al gorithm devel oped by Chang, Hallahan and Swany (1992)
and is based on a nethodol ogy introduced by Swamy and Ti nsley (1980).
For further discussion of this nethodol ogy, see Swany, Mehta and

Si ngansetti (1996).
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N | =299, *010 = *10a = 112 = - 0001. If these regtrictions are nearly satisfied when the
restrictionson A given in (14) are not imposed than when they are imposed, then one can conclude that the
regressors included in equation (10) are appropriate in the sense that they adequately explain the variation in
the coefficients of equation (7).

Equations (7) and (10) jointly describe the time-series model being estimated to explain the excess

returns r;, - rg, in Section 5 below. Thus, substituting equation (10) into equation (7):

1
Boo Bor  Bos|| Zi1, t1 s 0it
Fie Ve = [1 (e 1) ] I . +[1 (rye el "l (15)
BlO Bll BlG : Yt
Zie, t1

This equation is not linear and contains an error term that is both heteroscedastic and serially correlated. The
explanatory variablesin this equation are the excess market return r,,. - I, the six concomitants, z,
(introduced in Assumption | that includes firm size and the ratio of book-to-market equity), and the interactions
between the excess market return and each of the concomitants. Used alone without these interactions, the
concomitants may not have adequate power to explain stock returns because of the multidimensional nature of
stock risks. Previous tests of the CAPM neglect to consider these interactions. They a so use two-pass
regressions (see Bodie, Kane and Marcus (1993, Chapter 11) for asurvey of these tests). In principle, applying
one-pass regression to (15) is superior to two-pass regressions, even when the second-pass regression
overcomes the measurement error problem crested by the $ estimates. Under Assumptions| and 11, the
conditional mean of the dependent variable of equation (7), giventhevaluesof z,, and (1, - r;,) ,isequal
to the first term on the right-hand side of equation (15). For empirical estimation of equation (15), any one of
three data sets (time-series data, cross-section data, and time-series-cross-section data) may be used, although

Assumptions | and |1 are well suited only to time-series data (see Swamy and Tavlas (1995)).°

5If time-series-cross-section data are used to estimate equation
(7), then equation (10) may be changed to _(it =AzZ, +H + a0 wher e
H; = (Mg; Hy;)  is a constant through time; it is an attribute of the i-
th asset (or group of assets) which is unaccounted for by the included

12



Now suppose that Assumptions | and Il and the restrictions given by (12) hold. It follows that: (i)
equation (15) explains how firm size and the ratio of book-to-market equity influence the excess returns,
e — Vg Which, inturn, influence the stochastic behavior of earnings, (ii) the sum

it

B,.z +B

01Zi1, t-1 z

measures variation in excessreturns, r;, - Iy, associated with firm size and

02712, t-1

BE/ME that is not captured by the market return, and (iii) the 2;, Can be identified as state variables that lead
to common variation in the excessreturns, r;, - g, that isindependent of the market and thus carries a
different premium than general market risk. Note that (i)-(iii) are directly responsive to issues (i)-(iii) raised by
Fama and French (1993) and restated in the Introduction.

It is useful hereto consider variations of the model proposed above. Clearly, the conjunction of the
model given by equation (7) and Assumptions | and |1 isfaseif it cannot explain and predict the underlying

phenomenon better than the following inconsistent or restrictive alternatives introduced earlier,

By =0for k=0, 1and j 0, Ny =0, *, =*0 =*,.=0 *. =1 (16)

la 10a 1la

or,

By O0for k=0, Tandj#0, M=0, %, =*. =*,=0 *,-1 (17)

Restriction (16) implies that equation (7) is a fixed-coefficients model with first-order autoregressive (AR(1))
errors, while Restriction (17) implies that equation (7) is a fixed-coefficients model with white-noise errors.

It is useful to digress for amoment to the subject of model validation based on forecast comparisons.
A rationale for thistype of comparison is provided by the cross-validation approach--which consists of splitting
the data sample into two subsamples. The choice of amodel, including any necessary estimation, is then based
on one subsample and its performance is assessed by measuring its prediction against the other subsample. The
premise of this approach isthat the validity of statistical estimates should be judged by data different from those

used to derive the estimates (see Mosteller and Tukey (1977, pp. 36-40)). Friedman and Schwartz (1991, p.

vari abl es but varies across i. Wen equation (7) is estinmated separately
oo Bio) /- So By, and
in equation (15) are inplicitly allowed to vary across i.

for different i, the vector l, gets absorbed into (B

BlO
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47) aso indicate that a persuasive test of amodel must be based on data not used in its estimation.
Furthermore, formal hypothesis tests of amodel on the data that are used to choose its numerical coefficients
are almost certain to overestimate performance: the use of statistical tests leads to false models with probability
1if both the null and alternative hypotheses considered for these tests are false, as shown by Swamy and Tavlas
(1995, p. 171 and footnote 7). That thisis a problem in the present case follows from the lack of any guarantee
that either anull or an aternative hypothesiswill be true if the inconsistent restrictions (14) or (16) or (17) are
necessary parts of the maintained hypothesis. Conversely, ahypothesisistrueif it is broad enough to cover the
true model as a specia case. Thisisthe motivation for extending the CAPM: to make it broad enough so that
thereis abetter chance of encompassing the true model as a special case. Accordingly, in Section 5 below,
model (7) and Assumptions | and Il with or without restrictions (14) or (16) or (17) are evaluated based upon
forecast comparisons.

Modéd (7), Assumptions | and 1, and the three sets of restrictions can be combined as conjunctions,
listed here in decreasing order of generality regarding the restrictiveness of assumptions.

Conjunction I: modd (7), Assumptions| and I1.

Conjunction I1: model (7), Assumptions| and I, and set (14).

Conjunction I11: model (7), Assumptions| and I, and set (16).

Conjunction 1V: modd (7), Assumptions | and I1, and set (17).
The reason for considering Conjunctions I1-1V--even though they are inconsistent--is to examine how they
perform in explanation and prediction relative to Conjunction |. Doing this is especially useful for
understanding earlier empirical work leading to the CAPM puzzle.

The accuracy of the model, or its validity, isdetermined asfollows. Let R, = Iy - g After
estimating the models defined by Conjunctions |-V, forecasts of the out-of-sample values of R, are generated
from each of the estimated models. Let these forecasts be denoted by FAQi ¢ Thentwo formulas are used to

A

measure the accuracy of Ri &

(i) root mean-square error = RMSE = \'% (Ri 1.s = Ri 1.9 2 (18)
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and

E ~
E | Ri,T+s - Ri,T+s| ’ (19)

s=1

(11) nean absolute error = MAE =

Tl

where F is the number of periods being forecasted and T isthe terminal date of the estimation period.

4. Data

The r,, arethe monthly value-weighted stock returns on each of 10 portfolios that are formed
following Famaand French’s (1993, p. 11) procedure: “Each year t from 1963 to ... [1993] NY SE quintile
breakpoints for size (ME, ...), measured at the end of June, are used to allocate NY SE, Amex, and NASDAQ
stocksto five size quintiles. Similarly, NY SE quintile breakpoints for BE/ME are used to allocate NY SE,
Amex, and NASDAQ stocks to five book-to-market equity quintiles.” The 10 portfolios are formed asthe
intersections of the five-firm size and the lowest- and highest-BE/ME quintiles, denoted nsibje,i=1, 2, ..., 5
andj =1, 5. For example, the nslble portfolio contains the stocks in the smallest-ME quintile that are also in
the lowest-BE/ME quintile, and the nsSh5e portfolio contains the biggest-M E stocks that also have the highest
values of BE'ME.

The proxiesfor rg, and r,,, arethe same as those employed by Famaand French (1993). That is,

I, = the one-month Treasury bill rate, observed at the beginning of the month, and r,,, = the value-weighted
monthly percent return on the stocks in their 25 size-BE/ME portfolios, plus the negative-BE stocks excluded
from the portfolios.

and z

The sources of the data employed here on the z are explained in Famaand French

il, t-1 i2,t-1

(1992). The variables z z and z were obtained from the FAME data base maintained by

i3, t-1’ i4, t-1’ i5, t-1

the Board of Governors of the Federal Reserve System. The index t denotes the months that occurred in the
period from July 1963 through December 1993. The subscript i of variablesin equations (7), (10), and (11)

should not be confused with the i of nsibje.

5. Empirical Results and Applications
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Tables 1a-c show the estimates for Conjunction |. The maxima, minima, and ranges of the estimates
(Cosp) Of (45 inTable 1ashow considerable variation over time for al 10 portfolios. By contrast, for the
same portfolios, the volatilities of the estimates (;,) of (,;, arequite low. When estimated without the
nonnegativity congtraint, the estimates of (;, were negative only for 5 of 341 months and for 1 (ns1b5e) of 10
portfolios.

Black (1995) provides three theoretical reasons why the line relating expected return and $ isflatter
than suggested by the CAPM, as stated in the Introduction. The question arises then, do the valuesin Tables
la-c support such aflat line? The answer is“no,” asis shown below. Under the conditions stated bel ow
equation (13), the arithmetic means of {;, in Table lagive measures of portfolio risks. These arithmetic
means are positive for all 10 portfolios and are significantly different from zero for 7 of these portfolios. The
arithmetic means of {;, are not significantly different from zero for these 7 portfolios and are significantly
different from zero for the 3 highest-BE/ME portfolios (ns2b5e, ns3b5e, and ns4b5e) for which the arithmetic
means of {;, areinsignificant. The significant means of {;, and theinsignificant means of {;, for the 3
portfolios cannot be interpreted as evidence of aflat expected return-$ line because they arise as a direct
consequence of the significant estimates of some of the coefficients on z's and on the interactions between

(rye - Fg) andeachof theZ'sthat are discussed, in detail, below.

Mt

Table 1b shows that the estimates of the intercept (B,,) of equation (15) are insignificant for al 10
portfolios. What does this finding say about Conjunction |? The answer follows from Merton's (1973) work,
revealing that a well-specified asset-pricing model produces intercepts that are indistinguishable from 0. Fama
and French (1993, p. 5) also state that “judging asset-pricing models on the basis of the interceptsin excess-
return regressions imposes a stringent standard.” The insignificance of the B ), in Table 1b shows that, at least
in the cases considered here, Conjunction | shares a property with awell-specified asset-pricing model and
meets Fama and French’s stringent standard.

Table 1b also shows that the estimates of the coefficient (B, ) on log(size) are significant for 2

portfolios (ns2ble and ns2b5e), the estimates of the coefficient (B;) on the dividend-priceratio of the S& P
500 are significant for 4 portfolios (ns2b5e, ns3b5e, nsbhle, and nsbh5e), and the estimates of the coefficient

(Byg) 0N the January dummy variable are significant for 7 portfolios (nslble, nslbSe, ns2bSe, ns3b5e, nsAbbe,
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nsbble, and nsbb5e). This result shows, among other things, that except for 3 portfolios (ns2ble, ns3ble, and
nsAble), the strong January seasonalsin the returns on 7 stock portfolios are not absorbed by strong seasonals
in the explanatory variables of equation (15) other than the January dummy variable (z;4  ,)- The estimates

of the coefficientson z. and z

i2, t-1’ z

areinsignificant for al 10 portfolios.

i4, t-1’ i5 t-1

Furthermore, the estimates of the coefficient (B,,) on (r,, - rg) aesignificant for 7 portfolios
(nslble, nslb5e, ns2ble, ns3ble, ns4ble, nsSble, and nsbh5e)(see Table 1b). For the remaining 3 portfolios
(ns2b5e, ns3b5e, and nsAb5e), the estimated coefficients on the interaction between ( 1, - rg) andthe
default premium (z;, , ,) are significant (see Table 1b). Under the conditions stated below equation (13), the
estimates of B, , can be viewed as the estimates of E( $,,| z;,) and the difference between the arithmetic
mean of ;. inTablelaand B, in Table 1b gives an estimate of the arithmetic mean of the sum of
mismeasurement effects and omitted-variables biases. These differences do not appear to be insignificant for
most of the 10 portfolios.

The interactions, the estimates of whose coefficients are significant, are (I, - rg) *l 0g(si ze)
for 3 portfolios (nslble, ns3ble, and ns5b5e), (I, - rg) *( BE/ ME) for the portfolio nsSbSe,

(rye - Fg *(default prem unm for 4 portfolios (ns2b5Se, ns3bSe, ns4bSe, and nsbh5e), and

Mt

(Fye = g *Z4s5 ¢4 fOr the portfolio nsdble. The estimates of the interaction coefficients B ; and B, ¢ are

Mt
insignificant for all 10 portfolios.

All the estimates in Tables 1aand 1b unambiguously support only one conclusion: the relation
between the observable counterparts of expected return and $ isnot aflat line but is nonlinear. Thisfinding
provides possible answers to Black’ s (1995) questions stated in the Introduction. The cross-section of average
returns on U.S. common stocks probably showslittlerelationto the B, + ,; defined in footnote 3 and

shows significant relation to the z__, asimplied by Famaand French’s (1992) results, if the interactions

it’
between (r,, - rg) andeach of the z, ., and the heteroscedasticity and seria correlation of the error term
in equation (15) are neglected.

Table 1c indicates the extent to which Conjunction | satisfies set (12) of restrictions. In 7 of 10 cases
shown in thistable, the whole set is nearly satisfied. In addition, in all 10 cases, the estimated variance of a_;,

and the estimated covariance between a_;, and a,,;, are very small in magnitude relative to the estimated

oit
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variance of a,,.. . It should be noted that exclusion of a concomitant variable from equation (10) because its

oit’
estimated coefficient isinsignificant isimproper if the variable is needed to explain the variation in (. Itis
better to include a concomitant that substantially explainsthe variationin (,;, thanto excludeit eveniif its
inclusion means reducing the t ratios of the estimates of the coefficients of equation (10).

Tables 2ab and 2c display the results for Conjunction 1. These results provide information on the
effects of set (14) of restrictions on the estimates in Tables 1a-c. The valuesin every column of Table 2ab can
be compared with those in the corresponding column of Table 1a. Plots (not included here) show that while the
time profiles of {);, in Tables 2ab and laare the samein all 10 cases, those of {;, inthesetablesarethe
sameonly in4 of 10 cases. Thet ratios of B, and B, in Table 2ab are generally higher in magnitude than
those of the arithmetic means of (,;, and {;, in Table 1a. It is possible that the extra precision obtained by
imposing set (14) of restrictions is spurious because several of the estimates of B in Table 1b are significant. In
4 of 10 cases, the etimates of B, in Table 2ab are significant. This shows that Conjunction |1 does not always
satisfy the property of awell-specified asset-pricing model noted by Merton (1973). In 3 of 10 cases shownin
Table 2ab, the estimates of B, and B, , are significant and insignificant, respectively, supporting the
conclusion that arelation between expected return and $ isflat. However, such aconclusion is not credible
because it is based on Conjunction I, which isinconsistent.

Tables 1c and 2¢ might be compared to determine whether the regressors of equation (10) are
appropriate and sufficient. It can be seen from these tables that for 8 of the 10 portfolios, set (12) of restrictions
is better satisfied when set (14) of restrictionsis not imposed than when it isimposed. This result supports the
conclusion that the regressors of equation (10) are the appropriate explanatory variables for (;, but some
additional concomitants are needed to completely explain al the variationin (;,. for al portfolios. Further
work is needed to find such additional concomitants.

Tables 3 and 4 show parameter estimates for Conjunctions |11 and IV, respectively. Thet ratios of
B,, and B, , in these tables are generally higher than those of B, and B, , in Table 2ab in absolute value. The
spuriousness of the extra precision obtained by imposing inconsistent sets (16) and (17) of restrictionsis more
pronounced than than that of the extra precision obtained by imposing inconsistent set (14) of restrictions.
Since the explanatory variables of equation (15) are not orthogonal to one another, and its error covariance
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matrix is not equal to ascalar times an identity matrix under all Conjunctions -1V, the estimates B, in Tables
2ab, 3, and 4 are not comparable to the estimates B ), in Table 1b. The estimates of N, in Tables 1c, 2c, and 3

offer little support for the presence of serial correlation among the The estimates (F?‘OOa) of the

70it”

variance of a, .. in Table 1c are generally smaller than the estimates F2* _inTable 2c and the estimates Fi

oIt a 00a
in Tables 3 and 4, indicating that in most cases the variance of a,;, isreduced asthe z's are added to equation
(10). This reduction in variance helps to weaken the correlations between (;, and (I, - g, -

The values of log likelihood in Tables 1a, 2ab, 3, and 4 might be compared to determine whether one
of the Conjunctions -1V has greater support of the time-series data used for estimation than other
Conjunctions. With one exception, these values in Table la are higher than those in Tables 2ab, 3, and 4. The
exception corresponds to the portfolio ns2ble in Table 2ab. Even in this case, the value of thelog likelihood in
Table laisonly dightly smaller than that in Table 2ab. This shows that the support of the data to Conjunction |
is either greater or only dightly less than the support to Conjunctions 11-1V.

Sincethet ratiosin Tables 1aand 1b are based on a consistent set of general assumptions that are not
used by earlier tests of the CAPM in the literature, they do not fall into Black’s (1995, p. 2) category of “the
simplest kind of datamining.” Still, it is appropriate to seek RMSE and MAE measures for each portfolio of a
conjunction’s success in predicting the out-of-sample values of the dependent variable of equation (7). Tables
1c, 2c, 3, and 4 report for each portfolio the values of such measures in the RM SE and MAE columns. The
RMSEsfor Conjunction | are smaller for 7 portfolios and dightly higher for 3 portfolios than those for
Conjunctions I1-1V. For a conjunction which has at least 10 more unknown parameters and hence uses up at
least 10 more degrees of freedom than any of Conjunctions I1-1V, thisis not a bad performance. Perhaps
Conjunction | would have produced lower RM SEs than Conjunctions I1-1V for al 10 portfoliosif al the
parameters of equations (11) and (15) were known. Based on the RM SEs, Conjunctions |1-1V cannot be
preferred to Conjunction |. Even though the MAEs for Conjunction | are smaller than those for Conjunctions -
IV in5 of 10 cases, they are much bigger than those for Conjunctions 11-1V in 2 of the remaining 5 cases. Two
reasons for thisresult are: (i) the predictor used to generate forecasts of the dependent variable of equation (7)
isoptimal relative to a quadratic loss function but is not optimal relative to an absolute error loss function, and

(ii) sometimes inconsistent model s appear to predict better than consistent models if inappropriate formulas are
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used to measure the accuracy of forecasts. In the long run, only consistent models are able to tell the truth.

Any empirical result that holds for al 4 Conjunctions can be considered robust. The arithmetic means
of the estimates of (;, under Conjunction | and the estimates of B, , under Conjunctions -1V are the
estimates of the conditional and unconditional expectations, E( (;;| Z;,) and E( (4;,) , respectively. It can
be seen from Tables 1a, 2ab, 3, and 4 that these estimates are close to one another and hence are robust.

Fama and French (1993, p. 53) list four applications--(a) selecting portfolios, (b) evaluating portfolio
performance, (¢) measuring abnormal returnsin event studies, and (d) estimating the cost of capital--that
require estimates of risk-adjusted stock returns. The estimatesin Table 1b can be substituted into the first term
on the right-hand side of equation (15) to obtain the estimates of risk-adjusted stock returns because (;, isa
comprehensive descriptor of stock risk. The preceding discussion shows that these estimates do a better job in
all four applications than those of previous studies. The methodology used to obtain the estimatesin Tables 1a
¢ can also be used to obtain accurate predictions about as yet unobserved values of the dependent variable of
equation (15). The discussion in this section and in Sections 2 and 3 shows that the measures of market or
“systematic” risks of portfolios given by the arithmetic means of ;. in Table laare theoretically and

empirically superior to estimates of $ presented so far in the literature.
6. Conclusions

This paper has extended the CAPM to account for the effects of differences between unobservable
and observable stock and market portfolio returns, of excluded variables, and of departures from alinear
relationship between the observable returns on individual stock and market portfolios. The extended CAPM is
tested using a stochastic-coefficients methodology. For purposes of comparison, both consistent and
inconsistent sets of assumptions are made in these tests. Tests based on a consistent set of assumptions show

that the relation between the observable returns on stock and market portfoliosis nonlinear.
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