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Abstract

This paper considers issues relating to the segmentation or grouping of credit exposures and
the potential impact upon economic capital allocation and attribution. When discussing
capital allocation, we refer to the assessment of total capital at the portfolio level, while our
discussion of capital attribution focuses on getting capital assigned appropriately at the
bucket level.

We emphasize that a loss or value function must be specified so as to quantify the gains and
losses from choosing a more or less granular asset segmentation scheme. Our chosen loss
function considers the trade-off between the decrease in sampling variance obtained by
combining data to increase sample size and the bias resulting from characterizing unlike
assets with the same default probability.

The implications are illustrated with several numerical examples that consider accuracy in the
estimation of both portfolio-level and asset-level capital requirements. The suggested
technique can be used to quantify whether a loss in accuracy from grouping or segmentation
is outweighed by the decrease in variance of estimated capital. That is, the “loss” from
grouping is small when the evaluation criterion is the accuracy of estimation of the required
total capital; grouping is of more concern when we are interested in getting capital attributed
correctly at the bucket level.
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I. Introduction

The concept of economic capital (also referred to as "risk capital" or "risk-based
capital") is increasingly being adopted by banks and other financial institutions as a
standard by which to determine the amount of capital needed to protect against financial
distress in the event of unexpectedly large losses.

When calculating portfolio economic capital requirements, most models estimate
critical values corresponding to extreme tail percentiles of a portfolio or whole-bank loss
distribution. Economic capital requirements are then set to cover a measure of
"unexpected loss," defined as the difference between the estimated mean of the loss
distribution and the estimated loss level corresponding to the chosen critical tail
percentile.

By their design, economic capital models are complex, and usually take as input
the output of several other modeling exercises, including but not limited to the estimation
of asset-level default probabilities (PD), loss given default (LGD) rates, and cross-asset
correlations of these same parameters. Because these models are inherently complex,
financial institutions must assess the risks of using them, as well as their associated
driver-models. Model risk is defined for this purpose as the potential for loss from
incorrect predictions or incorrect decisions resulting from the misuse of models. Such
misuse usually occurs when a model is misapplied or its results are misinterpreted.

Model risk is assessed in the context of the intended use of models and best-known



practices used to build models. Credit risk decision models are evaluated with respect to
sample design, modeling techniques, validation procedures, and re-validation procedures.
This paper considers issues relating to the segmentation or grouping of credit exposures
and the potential impact upon economic capital allocation and attribution. When
discussing capital allocation, we refer to assessing total capital at the portfolio level,
while our discussion of capital attribution refers to assigning capital appropriately at the
bucket level. We discuss whether a model’s logical structure fits its application. As
referenced in OCC Bulletin 2000-16, “Risk Modeling — Model Validation,” this
assessment is essential to the first stage of model validation.

In most quantitative approaches to assessing expected loss and reserves, or the
appropriate amount of economic capital to support a portfolio of assets, the risk ratings of
assets and their associated estimates of PD and LGD are key inputs. PD and LGD can be
estimated using a variety of techniques including simple descriptive statistical analysis,
statistical and econometric regression models, and structural finance models. Whatever
the approach, these metrics are almost impossible to estimate uniquely for each asset —
there is simply not enough available information. Assets are therefore grouped, or
segmented, into categories — buckets — and PDs are estimated by bucket. This results in
PD estimates that are actually average PDs for assets within categories.

Since models that yield estimates of economic capital requirements are typically
nonlinear in PD, how assets are grouped or bucketed has implications for economic
capital. That is, estimation usually poses the following trade-off: As the size of each
group increases, PD estimates of group averages, although more precise, are less relevant
because more heterogeneous assets are grouped together. And as the size of each group
decreases, PD estimates become less accurate.

This paper analyzes exactly this trade-off in the context of economic capital
allocation and attribution. We employ the Basel II specification in our analysis since it is
built upon a very simplified economic capital model, the Asymptotic Single Risk Factor
(ASRF) model, which allows for marginal portfolio capital charges to be computed based
upon exposure-level characteristics. (See Vasicek (1997) and Gordy (2000) for a detailed
discussion of the ASRF.) The ASRF model enables a bank to calculate its minimum

regulatory capital requirement for total portfolio credit risk as the sum of exposure-level



capital charges, which in turn are strictly functions of PD, LGD, and a single portfolio-
level asset correlation coefficient. However, this simplicity does not come without cost,
since one can justify computing portfolio capital charges in this way only if (1) there is a
single systematic risk factor driving correlations across obligors and (2) no exposure in a
portfolio accounts for more than an arbitrarily small share of total exposure.

The Basel II implementation process is devoting considerable resources to
defining standards and procedures by which to judge the readiness and ability of financial
institutions to estimate loan characteristics including PD and LGD. Supervisory
authorities are developing detailed specifications of the validation standards for these
drivers. We therefore do not focus on issues relating to the validation of models used to
estimate the drivers of, or inputs to, economic capital models. Our focus is instead on the
application of the economic capital model, and we emphasize that a loss or value function
must be specified so as to quantify the gains and losses from choosing a more or less
granular scheme of asset segmentation. The numbers and types of alternate loss
functions that could be specified are great, and they vary with the ultimate business uses
of the capital estimates. Nevertheless, a natural starting point is to consider the mean-
square error implications (MSE) of alternate segmentations or groupings of assets for

economic capital. We illustrate the implications with several numerical examples.

Il. Parameter Estimation

Consider first the case of two types of assets, with the second being the riskier (higher
PD) asset. The question is whether to combine assets 1 and 2 into the same risk bucket
for purposes of estimating PD and capital. Suppose there is a sample of experience on
loans of each type, n; observations on loans of type 1 and n, on loans of type 2.
Presumably (but not necessarily) n;>n,, so that there are fewer of the riskier type of asset.
Let x; and x, be the observed average default rates of assets 1 and 2. Now, suppose that
x; and x; are normally distributed with mean vector 0 and variance matrix X. This makes
sense if n; and n, are fairly large, or if x| and x; are suitable transformations of the
default rates, for example, logits. We proceed with the actual rates, so that the situation is
one of estimation of two binomial probabilities, noting that the results easily apply more

generally. In this case the variance has a simple structure, with



211 =01(1-01)/ny, X2z = 02(1-62)/n,.
To simplify matters, we will assume here that X1, = %5, = 0.
The single "restricted" estimator, x,, that results from combining type 1 and type 2
assets into one group is given by
x; = (n;X;+nyXz)/n, where n = n;+n,.
Its expectation is
E[X; = (n10; + ny0,)/n
The biases of x; as an estimator of 8; and 0, are
E(x-01) =n(0, - 6))/n, E(x-02) = -n1(0, - 0;)/n.
These are sensible: the higher risk asset has an underestimated PD and the lower risk an
overestimated PD, and the position of the average between these two PDs depends on the
relative sample sizes. The gain from allowing this bias is a variance reduction relative to
the unrestricted estimator. The variance of x,1s
V(%) = (n°/n%) 21 + (n2°/n%) oy
= (m01(1-0;) + n20,(1-6,))/n’
= (n10,(1-0) + n, B2(1-8,))/n’

I11. Estimating Capital Requirements
Rather than simply considering the variability or bias in estimation of PD, we want to
focus on the variability in estimation of risk capital. As mentioned earlier, we will
consider capital to be determined by the risk weight formula for corporate, sovereign, and
bank (CSB) exposures, which is specified in the proposed revisions to the Basel accord
(BIS, 2004). Actually, we will use a somewhat simplified version of the Basel II function,
considering the case where asset maturity is fixed at one year and LGD=100%, .
Let W(0): [0,1]— [0,1] denote the curve giving the capital risk weight (in fractions of
loss given default, LGD) as a function of the probability of default. We have that

W(0) = N[G(0) (1-R)** + G(0.999) (R /(1-R)) *°1-6
where R = 0.12(1+EXP(-500)), N(x) denotes the cumulative distribution function for a
standard normal random variable, and G(z) denotes the inverse cumulative normal

distribution. We have made a further simplification by approximating the term EXP(-50)



appearing in the published formula by zero. The actual value is less than 102°. Note that

this risk weight curve is generally a concave function in PD, as illustrated in figure 1.

Figure 1: Capital Risk Weight Curve
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It is interesting to note at the outset that, while in general the unrestricted observed
default rate is an unbiased estimator for the true group default probability 6, the risk
weight corresponding to the observed default rate, W(x), does not yield an unbiased
estimate of the risk weight corresponding to the true default probability, W(4). Indeed,
since the risk curve is concave, we have E[W(x)] < W(E[x]) = W(0), by Jensen’s
inequality. Thus, “plugging in”” an unbiased estimator for PD and evaluating the risk

curve there leads to a higher-than-appropriate capital estimate.’

2 To see this, take a Taylor series expansion of W(x,) around the true default rate 6, This yields
W(xp) = W(6)) + W (0,)/0x,*(x-01) + (1/2)8°W(8,)/0x,*(x,-6,) +
where r is small (with a maximum order of (x;-0,)°). Taking expectations gives

E[W(x;)] = W(0,) + (1/2) 6°W(0,)/00,**V(x,)



IV. Loss Functions

We are now at a point where we can discuss the alternative loss functions that could be
considered when assessing the consequences of bucketing decisions on economic capital
estimates. We must distinguish between capital allocation and capital attribution. When
discussing capital allocation, the corresponding loss function will focus on the variation
in the average risk weight across buckets. In contrast, when considering capital
attribution, a loss function for assessing attributed capital will be driven by a weighted

average of variations in bucket-level capital risk weights.

Capital Allocation
The average capital risk weight for our portfolio containing n; assets of type 1 and n,
assets of type 2 is given by:
(n;W(0) + n2W(02))/n
It will also be useful to use a quadratic approximation to the concave W() function:
W(x) = ax - bx* + k
Using this approximation, the average capital risk weight, when evaluated using the
unrestricted estimates x; and X,, has expected value
(ni/n)(aE[x,] — bE[x;]* — bZ1; + k) + (ny/n)(aE[x2] — bE[x2]* — bZys + k)
= (n/n)(a0; - bO;* — bZ1y) + (np/n)(ab; - bh,* — bEy) + k
If the default probabilities O were known, the average capital risk weight would be
correctly calculated as
(n/n)(ad; - bO,?) + (no/n) (abs - bO,?) + k
Hence the bias in the average capital risk weight is negative and equal to
—b(nX;1+nZ)/n.
Similarly, we calculate the variance of the average portfolio risk weight to be

E[n;(a(x;-01) - b(x1%-0,%))+ ny(a(x2-02) - b(x,>-0,%))]*/n’

since E(x;-0,) = 0. Since W is concave, the second term is negative and the random variable W(x;) has
expectation smaller than W(E[x;]) = W(6,). Kiefer and Larson (2003) investigate this bias in detail and

propose corrections.



Using the assumed independence of x; and x,, and noting that the normal third moments
are zero and fourth moments are 3% , this simplifies to

(0 (2’21 + b*(3Z119) + no? (a%Z0s + bA(32,7%)))/n’
We now have enough information to show that when risk weights are calculated by
plugging the unbiased, unrestricted estimators into the W function (as envisioned by
Basel II), the mean square error in the average risk weight is given by

MSE, = (b*(niZ11+mZ0)” + % (a’%1; + 3b°21,%) + ny? (8% + 3b°20,7%))/n’.

We now turn to the average capital risk weight that is obtained using the restricted
estimator that combines assets into a single bucket. We consider the calculation of W at
X;. Again using our quadratic approximation to W, taking expectations yields
E[W(x.)] = (aE[x:]- b(E[x:]* — bV(x)+k).
Recall that E[x,]= (n,0; + n,0,)/n and that V(x;) = (n;*/n’) 1, + (n,*/n%) s,
Thus, the bias in using the restricted estimator W(x;) for W(0) is given by
a((n10; + n20,)/n) — b((n,0; + 120,)*/n?) — b((n;*/n?) T, + (n2°/n%) T»)
- (m1/n)(af; - bO,%) - (nz/n)(ad; - bO,?).
The variance of W(x;) is given by
V(W(x,)) = a’V(x;) + b*(3V(x)?)
= a?((0,°Z 11 + ’00)/nd)+ b2 B3((n2/n?) Ty + (n22/n?) T00)?)
and the MSE; is of course the variance plus the squared bias.
The best quadratic approximation to W(0) around 6 = 0.05 is given by
W(0) = 0.130922 + 2.33006 0 - 5.17491 6°
Note that this quadratic approximation is quite accurate, with a maximum absolute
relative error of less than 0.2 percent for 0.015<6< 0.1 (i.e., the maximum error as a
fraction of the actual W(0) is less than 0.002)
Figures 2 and 3 illustrate the impact of choosing to combine or segment asset
classes for the purposes of allocating economic capital. The figures graph the difference
between the two mean square error measures of the average risk weight as functions of 0

and 0,, the true rates of default for the two asset classes in the portfolio.



The surfaces have been shaded to illustrate the regions where, for the indicated
portfolio sizes, the difference between 0; and 0, results in either positive or negative
differences in restricted less unrestricted MSE. When the difference is positive, a
granular bucketing system is to be preferred to one which pools asset types for the
purposes of minimizing MSE in total capital allocation. When the difference is negative,
a pooling of asset types results in lower MSE.

Comparing figures 2 and 3 illustrates the impact of larger sample sizes. We see
that, as expected, the restriction is better when the range of PD values for each bucket is

small. Larger sample sizes lead to restrictions being less desirable.

Capital Attribution
Capital attribution is concerned with bucket-level or segment-level accuracy in
estimation. We therefore want to formulate a loss function that is sensitive to variation in
bucket-specific estimates of risk weights.
When attributing capital to each of our two assets, using the unrestricted
estimators, the expected value of the bucket-specific risk weights are given by
E[W(x))] = (aE[x,] — bE[x,]* = bZ;; + k) = (a8, - bO,;> — bZ;; + k)
E[W(x,)] = (aE[x2] — bE[X,]* — bZ5, + k) = (a8 - bO,> — b,y + k)
If the true segment-specific default rates were known, then the risk weights would be
computed as
W(0)) =ab; - b, +k
W(8,) = a0, - b,* + k
This allows us to compute the unrestricted estimate bucket-level risk weight biases as
E[W(x1)-W(0,)] =-bZ;
E[W(x2)-W(02)] = -bXn,.
The variances of the bucket-level risk weight estimates are given by
VIW (D] = E[(a(x1-01) - b(x1™-01%)’]
VIW(x2)] = E[(a(x2-02) - b(x2™-0,%))’]



Figure 2: Restricted MSE Minus Unrestricted MSE of Allocated Capital
(n; =500, n,=100)

Figure 3: Restricted MSE Minus Unrestricted MSE of Allocated Capital
(n,= 1000, n,= 200)
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Since the normal third moments are zero and fourth moments are 3 X jj2 , these simplify to
VIW(x1)] = (%11 + b*3ZiY)
VIW(x2)] = (a°E5 + b*(3%5,7))
By adding the squared bias, the bucket-level unrestricted mean square errors are given by
MSE, = a’%); + 4b°%;,°
MSE = a’%y, + 4b°%,,°
Which allows us to compute the weighted-average unrestricted MSE across buckets as

MSE, = (ni/n)(a’%; + 4b°%, %) + (no/n)(a’Zy, + 4b°20,7)

Turning to the restricted estimator, we have from our previous work that
E[W(x,)] = a((1n,0; + 120,)/n) — b(((n;0; + 120,)/n)* — b((n;*/n’) T, + (nx*/n%) To)+k.
and
V(W(x,) = a*((n,°Z 11 + 02°Z0)/m%)+ b*(3((n*/n’) Ty + (n,*/n’) 250)%)
We compute the restricted estimate bucket-level risk weight biases as
E[W(x,)-W(61)] =
a((n10, + n20)/n) — b(((n10; + ny0,)/n)* — b((n;*/n?) 11 + (n,*/n?) 10) — (ab; - bO,%)
E[W(x,)-W(62)] =
a((n;0; + n20:)/n) — b(((n,0, + n20,)/n)* — b((n;*/n?) 1, + (n2°/n%) T10) — (a0, - bH,?)

Again, by adding the variance and squared bias, the bucket-level MSEs from using the
restricted estimator are given by
MSE, = a* (0’11 + n2°E0)/n’)+ b2(3((n*/n%) 211 + (n2/n?) Tp)?) +
(a((n10; + n20,2)/n) — b(((n0; + ny0,)/n)* — b((n;*/n?) Ty + (n2%/n%) pz) — (a0, - bO,%))
MSE=a’(n,°Z1; + ny"Zp)/n’)+ b2(3((n/n%) Zy; + (no7/n%) Tp)?) +
(a((n;0; + ny0,)/n) — b(((1n;0; + n20,)/n)> — b((n,*/n) ;1 + (n2°/n°) Lp2) — (ab; - b6,%))?
which allows for the weighted-average restricted MSE across buckets to be computed as
MSE, = (ni/n)(@*(n°Z11 + 0" Zo)/m®)+ b(3((ny*/n%) Ty + (np/n%) T)?) +
(a((n;0; + ny0,)/n) — b(((n;0; + 10,)/n)* — b((n,*/n) 11 + (027/n?) p0) — (a0; - bO,%))?) +
(o/n)(@*((n°Z11 + n2°T00)/n?)+ b2(3((m2/n?) Ty + (m2/n?) Tn)?) +
(a((n;0; + n20,)/n) — b(((n;0; + n20,)/n)* — b((n,*/n%) T}, + (n,*/n?) Tay) — (a0, - b6,%))%)
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Figures 4 and 5 illustrate the differences in the MSE of risk weights that arise for various
combinations of 0, and 6, Again, we see that the restrictions are desirable only when the
range of PDs is small. Here, in contrast to the case of total capital, it is not only the
difference between the PDs that matters. When PDs are small, restrictions are less
desirable for a given distance between them. Concern for bucket-level accuracy will lead

to less combining of estimators.

IV. Conclusions

This paper illustrates an approach to capital model assessment by considering the
following trade-off: A bank can decrease sampling variance by combining data to
increase sample size, but as the bank increases sampling size, its estimates become less
accurate because increasingly unlike assets are assigned the same default probability. We
considered accuracy in the estimation of both portfolio-level and asset-level capital
requirements using a specification from the proposed revisions to the Basel accord.

Our technique can be used to quantify whether the decrease in variance of
estimated capital outweighs the loss of accuracy that results from making segments more
heterogeneous. Although these numbers are specific to the example, it is likely that the
relative ranking of the criteria holds more generally. That is, the “loss” from grouping is
small when the evaluation criterion is the accuracy of estimation of the required total
capital; grouping is of more concern when we are interested in getting capital attributed
correctly at the bucket level.

Note that we have not here suggested practical methods for deciding the
granularity of a bucketing procedure. We have simply considered the effects of using
different criteria to judge the effects of pooling buckets. A classical approach is to
“pretest,” perhaps with a t-test for differences in means, and then decide whether to pool
on the outcome of such a test (Mosteller, 1948) Classically, the pretest is done on the
difference between parameter estimates. The pretest, if desired, might be better done on

the estimated capital requirements directly.
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Figure 4: Restricted MSE Minus Unrestricted MSE of Attributed Capital
(n; =500, n, = 100)

Figure 5: Restricted MSE Minus Unrestricted MSE of Attributed Capital
(n,=1000, n,=200)
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