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Abstract:  A manual review of applications is an important component of statistically 

modeled fair lending exams.  How files to review are identified affect both resource 

allocation and reliability of conclusions.  This study uses Monte Carlo simulation to 

compare how six outlier identification strategies perform at identifying disadvantaged 

applicants.  The results show that the optimal strategy for minimizing cost and 

maximizing reliability of conclusions depends on the likelihood and severity of 

disadvantage.  Further, none of the strategies are highly successful at identifying 

disadvantaged applicants or minimizing the number of non-disadvantaged applicants 

reviewed.         
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I. Introduction 

 One objective of a fair lending analysis of mortgage applications is to identify 

individual applicants who have been disadvantaged.  With unlimited resources, a 

thorough review of each application in the population is optimal.  Unfortunately, 

regulators do not have unlimited resources and face a cost/reliability tradeoff.  Reviewing 

more files increases cost, but also increases the reliability of conclusions drawn.  As a 

result, when identifying applications to review, it is important to use a strategy that 

maximizes the likelihood of identifying disadvantaged applicants, while minimizing the 

likelihood of reviewing applicants that are not disadvantaged.  Currently, there is no 

convincing theoretical or empirical evidence identifying one strategy that best 

accomplishes those goals.   

Addressing the cost/reliability tradeoff when choosing files to review has always 

been important for fair lending analyses, but it is becoming even more important as these 

analyses begin focusing more on pricing disparities.  Historically, fair lending analyses 

have focused on disparities in underwriting decisions.  For these analyses, standard 

statistical methods have proven effective at identifying systematic patterns of disparate 

treatment, and consequently indicating the importance of a file review.  In the extreme 

case, one could argue that no file review is necessary if no statistical evidence of 

disparate treatment exists.  Although in practice, some file review is always necessary.  

The additional information from the statistical analysis makes choices about the 

cost/reliability tradeoff less important.   
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Recent changes to the Home Mortgage Disclosure Act (HMDA), requiring 

lenders to gather and report pricing data, shifts the focus of fair lending analyses from 

disparities in underwriting to disparities in pricing.  Pricing analyses present a number of 

econometric challenges that make the search for systematic patterns of disparate 

treatment difficult.  As a result, the statistical results provide less information about the 

importance of a file review, thereby making the file review more important in general.  

Choices about the cost/reliability tradeoff become more important as well. 

This study uses Monte Carlo simulation to compare and contrast six outlier 

identification strategies for identifying disadvantaged applicants.  The six strategies are: 

1) absolute residuals, 2) relative residuals, 3) influence statistics (DFBETA), 4) matched 

pair analysis, 5) forward searching method, and 6) non-parametric tree algorithm.  

Discrimination is artificially introduced into data from a recent OCC fair lending exam 

by increasing the APR for a subset of minority applicants.  The frequency and magnitude 

of discrimination, as well as the subset of minority applicants who are disadvantaged, are 

all varied during the simulation.  For each simulated dataset, each of the six outlier 

identification strategies is used to identify the disadvantaged applicants.  Two measures 

are used to compare the performance of the six strategies: 1) the percentage of 

disadvantaged applicants found, and 2) the percentage of non-disadvantaged applicants 

identified.  Strategies that identify a high percentage of the disadvantaged applicants 

while minimizing the number of non-disadvantaged applicants reviewed are preferable. 

The remainder of the paper is constructed as follows.  Section II provides a brief 

summary of the research on outlier identification strategies.  Section III then describes in 

detail the six strategies that are analyzed in this study.  Section IV discusses the data 

 3



generating process (DGP) and the Monte Carlo simulation used to compare and contrast 

the effectiveness of each of strategy.  Section V contains the simulation results, and 

section VI concludes the discussion. 

 

II. Background 

 This study focuses on identifying individual applicants that were disadvantaged in 

the price paid for a mortgage.  A disadvantaged applicant receives a price that is higher 

than expected given his risk profile.  From a statistical or modeling perspective, 

applicants with values for the dependent variable (price) that look different than expected 

are referred to as outliers.1  Similarly, applicants with values for an independent variable 

that lie outside the range of the rest of the applicants are categorized as leverage points. 

Graph 1 presents a scatterplot of APR and LTV, which shows the differences 

between outliers and leverage points.2  The bulk of the data points, labeled (a), are the 

regular observations that convey the true underlying relationship between APR and LTV.  

In this case, increases in LTV lead to fairly linear increases in APR.  Points (b) and (d) 

are outliers, because they deviate from the linear pattern formed by points (a).  In other 

words, the price these two applicants paid is different than expected given their LTV 

values.  This study focuses on strategies to identify outliers, such as points (b) and (d).  

Points (c) and (d) are leverage points, because the LTV values are much larger than the 

LTV values for the rest of the applicants.  Point (d) is therefore both an outlier and a 

leverage point.  Because point (c) does not deviate from the linear pattern formed by the 

                                                           
1 Under OCC policy, OCC examiners look for disadvantage of any size.  Therefore, unlike the typical view 
of outliers, the unexpected differences do not need to be extremely large for an applicant to be deemed an 
outlier in this study. 
2  This graph is based on a graph presented in Rousseeuw and Zomeren (1990). 
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data points (a), it is viewed as a good leverage point.  Point (d) does not lie on this line 

and is therefore called a bad leverage point.  This study does not analyze leverage points.3

Concern about the effects of outliers on statistical estimators, and how to identify 

them has existed for almost 70 years (Pearson and Sekar, (1936)).  Some significant   
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Graph 1: Scatterplot of APR vs. LTV 
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advances have been made over this time period.  For example, the problem of locating a 

singular outlier in multivariate data has been resolved for more than 20 years (Barnett and 

Lewis, (1978)).  What has not been resolved is how to identify multiple outliers in 

multivariate data.  This task is hindered by two problems, masking and swamping.  

Masking occurs when an application is an outlier, but is not identified as one by the 

method being used.  In this instance, potentially disadvantaged applicants are not being 

                                                           
3 There is a large literature analyzing leverage points.  For more information, see Atkinson (1994), Hadi 
(1992), Hawkins and Bradu (1984), Maronna and Yohai (1995), and Rock and Woodruff (1996). 
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identified.  Swamping occurs when an application is not an outlier, but is incorrectly 

identified as an outlier.  In this instance, applications are unnecessarily reviewed, which 

drives up resource costs.  

Masking and swamping are typically caused by other nearby outliers.  For 

example, suppose a dataset has no outliers, and that the dependent variable APR is only a 

function of a constant and LTV.  On a scatterplot of APR on LTV, a regression line 

generally dissects the middle of the data.  If an outlier is added to the data, the regression 

line will rotate or shift, causing some of the original observations to appear now as 

outliers (swamping).  If additional outliers are added close to the original outlier, these 

outliers may not be picked up as outliers because of the more pronounced rotation or shift 

of the regression line toward these outliers (masking). 

Much of the literature on outlier identification focuses on developing strategies to 

overcome the problems of masking and swamping.  Similarly, this study uses Monte 

Carlo simulation to determine empirically which of six outlier identification strategies 

best overcomes masking and swamping in a fair lending context.  The overall goal is to 

identify a strategy that is highly successful at finding truly disadvantaged applicants and 

minimizing the number of non-disadvantage applicants included in file review samples. 

 

III. Strategies for Identifying Outliers 

This section details the six outlier identification strategies that are compared and 

contrasted in this study: 1) Absolute residuals, 2) Relative residuals, 3) DFBETA, 4) 

Matched pairs, 5) Forward searching, and 6) Tree algorithm.  Each of these strategies is 

discussed in turn. 
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1. Absolute Residuals 

The first strategy is based on the residuals from a statistical model explaining the 

price applicants pay for a mortgage.4  This study uses APR as the measure of price and 

the OLS estimator to estimate all models.  The set of independent variables, along with 

summary statistics, are presented in Appendix A.  Race is never included as an 

independent variable, because the file review focuses on determining the effects of race.  

Once a model is estimated, it is used to predict the price each applicant should expect to 

pay given his or her risk profile.  Applicants with larger deviations between actual and 

predicted price are deemed more likely to be disadvantaged and in need of review.  

Therefore, the residuals can be used to rank order all applicants from those most likely to 

be disadvantaged to those least likely.  As a result, it is possible to show how this strategy 

ranks on the two performance measures for file review samples of different sizes.         

The first outlier identification strategy is called the absolute approach, because an 

outlier is defined solely on the deviation of the predicted price from the actual price, and 

is not based on a comparison of similarly situated applicants.  This is the most common 

strategy used during past statistically modeled fair lending exams conducted by the OCC.  

The OCC has used this method primarily because this is the standard residual analysis 

typically conducted when estimating any parametric model.    

 

 

 

                                                           
4 As with all residual-based discrimination analyses, the reliability of this approach depends on accurately 
predicting the price for each applicant based on his risk profile.  If these predictions are not accurate, then a 
large positive residual may be due to factors other than discrimination.   
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2. Relative Residuals 

Similar to the first outlier identification strategy, the second strategy is based on 

the residuals from a statistical model explaining the price applicants pay for a mortgage.  

Price is defined as the APR, OLS is used to estimate all models, and the set of 

independent variables is the same as for strategy 1.  Unlike the first strategy, information 

about similarly situated applicants is now incorporated.  Specifically, each applicant is 

assigned a comparison group, which consists of all other applicants with a price within 

+/- 25 basis points.5  Using the residuals, a relative residual measure is constructed.  For a 

minority applicant the relative residual equals his or her residual value less the largest 

residual for white applicants in the comparison group.  Similarly, for a white applicant, 

the relative residual measure equals the difference between his or her residual and the 

largest residual for minority applicants in the comparison group.  Applicants with larger 

values for this new measure are deemed more likely to be disadvantaged and in need of 

review.  Therefore, this measure can be used to rank order all applicants from those most 

likely to be disadvantaged to those least likely.  As a result, it is possible to show how 

this strategy ranks on the two performance measures for file review samples of different 

sizes. 

APR reflects the risk-based factors and adjustments from the lender’s rate sheets, 

as well as tradeoffs between note rate and fees or points.  Therefore, to some extent, two 

applicants with similar APRs have similar expected returns to the lender.  If the statistical 

model suggests an applicant is over-priced relative to other applicants with similar prices, 

the APR for that applicant potentially includes a discriminatory premium.  Using this 

                                                           
5 Using 25 basis points to define a comparison group is arbitrary, and the results may change if different 
cutoffs are used. 
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approach, applicants with smaller residuals may still be identified as potentially 

disadvantaged if their residuals are large relative to their comparison group.  As with the 

first strategy, the accuracy of the predicted APR values is very important.   

 

3. DFBETAs 

 The third strategy uses an influence statistic called the DFBETA to define 

outliers.6  DFBETA conveys the influence each application has on the coefficient 

estimates in the model.  For purposes here, the coefficient estimate of interest is the race 

variable.  Therefore, unlike the first two strategies, race is now included in each model.  

Price again is defined as APR, OLS is used to estimate all models, and all of the 

independent variables listed in Appendix A are included.   

For a particular application, DFBETA is the standardized change in the racial 

coefficient estimate if the model is estimated with that application excluded from the 

dataset.  All else being equal, disadvantaged minority applicants should have a positive 

effect on the estimated coefficient for the race variable.  This is conveyed by large 

positive values of the DFBETA statistic.  Therefore, the DFBETA measure can be used 

to rank order all applicants from those most likely to be disadvantaged to those least 

likely.  As a result, it is possible to show how this strategy ranks on the two performance 

measures for file review samples of different sizes. 

 

 

 

                                                           
6 There are a number of other influence statistics, including the hat matrix, studentized residuals, 
COVRATIO, and DFFITS.  DFBETA is used here, because it shows the direct affect each applicant has on 
the racial coefficient estimate.     
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4. Matched Pairs 

The fourth strategy is matched-pair analysis, which has been a standard tool used 

during fair lending exams for many years.  Using a set of main drivers of price as 

matching variables, matches are identified for both minority and white applicants.  For 

minority applicants, a white applicant is deemed a match if he or she has a worse risk 

profile based on the matching variables, but paid a lower price.  Similarly, for white 

applicants, a minority applicant is deemed a match if he or she has a worse risk profile 

based on the matching variables, but paid a lower price.  Minority and white applicants 

with at least one match are flagged as outliers.  

The key to this strategy is determining which variables to use as matching 

variables.  This could potentially be difficult for pricing analyses, because time and 

location are two important drivers of price.  Unless the volume of loans is very large, it 

will be difficult to find matches based on time and location, as well as other measures of 

creditworthiness.  For this study, three sets of matching variables are used.  The first 

contains only LTV; the second adds loan purpose (refinance vs. purchase), product (fixed 

rate vs. ARM), and channel (retail vs. wholesale); and the third adds loan amount, 

income, funds available to close, and predicted price. 

Unlike the other five strategies analyzed in this study, the matched pair strategy 

cannot be used to rank order the applicants from those most likely to be disadvantaged to 

those least likely to be disadvantaged.  What it provides is the number of applicants with 

matches, which in turn defines the size of the file review sample.  The number of 

applicants with matches falls as the number of matching variables is increased, so the file 

review sample size can be determined to some extent.  However, it is not possible to 
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determine how the strategy performs for all different file review sample sizes as can be 

done with the other strategies.   

 

5. Forward Searching 

 The fifth outlier identification strategy follows Chambers et al. (2004) and 

follows the basic premise that outliers should not be included in the statistical analysis 

used to identify outliers.  The estimates from a statistical model based on all applications 

in the population are affected by any outliers in that population.  In turn, this affects the 

identification of outliers.  With the forward searching method, outliers are identified 

using a model based on a dataset that does not contain outliers.  Forward searching 

describes the process used to identify this dataset. 

The first step of this strategy is to identify a subset of applications that does not 

contain outliers.  This is the crucial step in the process, because all subsequent steps 

depend upon this initial dataset.  Using all applications in the population, OLS is used to 

estimate a model explaining the price applicants receive on a mortgage.  APR is used as 

the measure of price, and race is not included as an independent variable.  Using the 

estimates from this model, the residual for each applicant is calculated.  The 50 

applications with the smallest absolute residuals comprise the initial subset of data that 

does not contain outliers.7  This subset is referred to as the initial clean dataset.  The 

second step is to re-estimate the model using the clean dataset.  These estimates are not 

affected by outliers and provide robust estimates of the true underlying relationships in 

                                                           
7 Using 50 applications for the initial clean dataset is based on the OCC’s sampling policies stating that a 
minimum of 50 observations is a general guideline for when to use statistical estimators. 
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the data.8  The third step is to use these estimates to calculate the squared Mahalanobis 

distance for each of the remaining applications in the population.9   

                                    )()( )(

^1

)(

^
'

)(

^
2

)( miimmiimi yySyyD −−=
−

where,    = price for applicant i iy

iy
^

 = predicted price for applicant i from a regression   
                    model based on m applications. 

1

)(

^ −

mS  = estimated covariance matrix of errors from a  
           regression model based on m applications. 
 

The application with the smallest squared Mahalanobis distance is viewed as the least 

likely of the remaining applications to be an outlier.  The fourth step is to augment the 

previous clean dataset by the one application with the smallest squared Mahalanobis 

distance, and repeat steps 2-4 with this augmented clean dataset.  

Chambers et al. (2004) suggests continuing this process until the smallest squared 

Mahalanobis distance is greater than a specified cutoff, or all applications in the 

population have been processed.  In the first instance, all remaining applications are 

flagged as outliers.  In the second, there are no outliers.  Chambers et al. (2004) suggest 

using a cutoff equal to the (1 - α/n) – quantile of the χ2 - distribution.   

This study takes a slightly different approach to identifying outliers.  Instead of 

applying a cutoff to identify outliers, the forward searching process is run through all 

applications in the population.  The OLS residuals for the original clean dataset of 50 

                                                           
8 If the original 50 applications are generally near the means of each of the independent variables, the fit of 
the model using only these 50 applications will be poor, and the estimates may not reflect the true 
underlying relationships in the data.  To check for this possibility, the Monte Carlo simulation was re-run 
using an initial clean dataset containing 100 application, and 150 applications.  The results were basically 
unchanged.      
9 The difference between the squared Mahalanobis distance and the standard Euclidean distance is that the 
Mahalanobis distance incorporates correlations within the data [Mahalanobis (1936)]. 
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applications, and the squared Mahalanobis distance values for the remaining applications 

are then used to rank order all applicants from those most likely to be disadvantaged to 

those least likely.  The 50 applications from the original clean dataset are always viewed 

as the least likely to be disadvantaged.  Using this approach makes it possible to show 

how this strategy ranks on the two performance measures for file review samples of 

different sizes. 

 

6. Tree Algorithms 

 The sixth outlier identification strategy is a non-parametric regression 

procedure.10  The basic principal of this approach is to divide the population of 

applications sequentially into smaller and more homogenous nodes.  A node is a subset of 

the population.  Individual applications that may not stand out as outliers in the entire 

population show themselves as outliers when the comparison group is smaller and more 

homogenous.  This approach is somewhat similar to the relative residual strategy, which 

is a parametric procedure. 

The first step of this strategy is to identify the node with the largest heterogeneity.  

Heterogeneity is measured as the weighted sum of squares (WSSR), where the weights 

are a function of a robust inference function.  Specifically, the WSSR for node k is, 

                                     (1) 2)( wk
ki

iikk yywWSSR
−

∈
∑ −=

where,    = price for applicant i iy

wky
−

 = weighted mean of price for applicants in node k 
 

                                                           
10 See Chambers et al. (2004) for a detailed discussion of tree algorithms. 
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The weight for applicant i in node k is calculated as, 
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)(xψ is the bisquare influence function, and c = 4.685.11,12

The second step is to take the node with the largest heterogeneity and identify all 

potential sets of child nodes into which it can be split.  These potential sets of child nodes 

are determined by applying different cutoffs to the ordered values of LTV.13,14  For 

example, to create one potential set of child nodes, all applications with LTV values 

below some cutoff are placed into one node, while all other applications are placed into 

the second node.  Changing the cutoff creates a different potential set of child nodes.  All 

possible cutoffs are used to create all potential sets of child nodes.  

The third step is to identify the one set of child nodes with the smallest 

heterogeneity.  Heterogeneity for a set of child nodes is merely the sum of the WSSR 

values for the two child nodes.  At this point, there is one more node than at step 1, 

                                                           
11 The bisquare inference function was proposed by Tukey [Beaton and Tukey (1974)].  See Hampel et al. 
(1986) for a thorough discussion of influence functions, including summaries of a number of specific 
influence functions. 
12 C is the tuning constant, which determines the robustness of the estimator to outliers and the efficiency of 
the estimator in the absence of outliers.  A value of 4.685 produces an efficiency of 95 percent when the 
data are normal. 
13 Some determinant of price is needed to identify potential child nodes.  This study uses LTV, because it is 
a standard determinant of price used by many banks.  
14 Using ordered values assumes the covariate being used in the splitting process is monotone.  If the 
covariate is not monotone, Chambers et al. (2004) suggest that potential sets of child nodes be defined for 
values of the covariate sorted by their corresponding average value of the dependent variable in the node. 
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because the node with the largest heterogeneity identified in step 1 has been split into two 

nodes.   

Steps 1-3 are repeated until all nodes are sufficiently homogenous, all nodes are 

too small to split further, or a user-specified number of nodes is reached.  Each time the 

process reaches step 3, each application within each node has been assigned a weight 

based on equation 2.  As nodes become increasingly homogenous, the weights for any 

outliers in the population will tend to zero, while the weights of non-outliers will tend to 

1.  Formally, an outlier is identified as an application with an average weight overall node 

splits that is less than some user-specified threshold.  Similar to the other strategies, 

instead of applying a cutoff, the average weights are used to rank order all applicants 

from those most likely to be disadvantaged to those least likely.  As a result, it is possible 

to show how this strategy ranks on the two performance measures for file review samples 

of different sizes. 

 

IV. Monte Carlo Simulation 

This section outlines the Monte Carlo simulation procedure.  The main drawback 

of using Monte Carlo simulation is that the results necessarily depend on the underlying 

DGP assumptions.  Because of this, I take a case study approach and use data from a 

specific fair lending exam previously conducted by the OCC.  This dataset contains 582 

approvals, 186 of which are minority applicants.  The simulation process controls the 

frequency and severity of disadvantage that is introduced into this dataset.  At a 

minimum, then, conclusions can be drawn with some certainty about how different 

outlier identification strategies would have affected this exam's results.  Caution must be 
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exercised, however, in generalizing these results and applying them to future fair lending 

exams.15

The Monte Carlo simulation process consists of eight steps. 

 

Step 1: Set the likelihood that a given minority applicant is disadvantaged.   

 

Step 2: Set the severity of disadvantage in basis points.  

 

Step 3: Incorporate discrimination into the original population.16  Using random  

draws from a uniform distribution, a subset of the minority applicants are 

identified as disadvantaged.  White applicants always face a zero probability of 

being either advantaged or disadvantaged.  The APR for each disadvantaged 

minority is then increased by the severity amount from step two.17

 

 

 

                                                           
15 As a robustness check, I also ran the Monte Carlo simulation with an APR measure constructed using the 
sorted predicted probabilities of denial from an underwriting model.  In essence, I took the role of the 
lender and used first-degree price discrimination based on risk to price each applicant.  The advantages of 
this measure of APR are that it is a solely risk-based measure, and it is certain that no applicants were 
disadvantaged.  This is important, because I want to control the frequency and severity of disadvantage in 
the Monte Carlo simulation.  The results using this measure of APR strongly favor the absolute and relative 
outlier identification strategies.  This is not surprising given that the APR measure is based on a 
multivariate model using similar independent variables as these two strategies.        
16 I assume that the original population contains no disadvantaged applicants.  As supporting evidence for 
this assumption, using the model specification discussed in the section on absolute residuals, the null 
hypothesis that the being minority has no affect on price could not be rejected at the 95 percent confidence 
level.     
17 The simulation was also run with the severity of disadvantage allowed to vary across minorities during a 
given iteration using draws from a normal distribution.  This had very little effect on the results.  
Alternative methods for incorporating disadvantage, such as allowing whites to be disadvantaged, may alter 
the results.    
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Step4: Use the six outlier-identification strategies to find the disadvantaged minorities.   

Except for the matched-pair strategy, the output for each strategy is a ranking of 

the applications from those most likely to be disadvantaged to those least likely to 

be disadvantaged.  This ranking includes both minority and white applicants even 

though only minority applicants can be disadvantaged.18  Files to review would 

come from those identified as most likely to be disadvantaged.  Constructing the 

output in this manner shows how each strategy performs at each possible sample 

size.  The actual number of files reviewed depends on available resources, 

evidence of fair lending risk from other components of the exam, and confidence 

in the approach used to identify the disadvantaged applicants. 

 

The matched pair strategy identifies a file as needing review if there is another 

applicant of a different race that has a worse risk profile, but a lower price.  An 

applicant is either an outlier or not.  For any two outliers, or any two non-outliers, 

it is impossible to determine which is more likely to be a disadvantaged applicant.  

Therefore, it is impossible to create a relative ranking of the applicants.  Instead, 

only the number of applicants identified as outliers is output. 

 

Step 5: Construct performance measures for each outlier identification strategy.  These  

measures are constructed using the rank-ordered output from step 4, starting with  

the applicants identified as most likely to have been disadvantaged.  The first 

performance measure is the percentage of disadvantaged applicants identified at 

                                                           
18 Both whites and minorities are included in the rank ordered lists, because during a typical exam, both 
white and minority applicants are reviewed to check for random inconsistency.  OCC examiners do not 
make the assumption that only minorities are possibly disadvantaged.   
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each sample size.  For example, suppose the current simulated population 

contains 10 disadvantaged applicants.  If five disadvantaged applicants are 

identified from a file review sample size of 20, the performance measure is 50 

percent.  Strategies with percentages that quickly converge to 100 percent are 

preferred.  The second performance measure is the percentage of applications in 

the file review sample that are not outliers.  For example, if 15 of the first 20 

applicants on the rank-ordered list are not disadvantaged applicants, the 

performance measure is 75 percent.  Lower percentages indicate that resources are 

not being wasted reviewing applicants that are not disadvantaged.  Because these 

performance measures are constructed for each file review sample size, each 

outlier identification strategy, except the matched pair approach, has two streams 

of performance measures.  The matched pair approach has only three performance 

measure values. 

 

Step 6: Execute 100 iterations of steps 3 through 5.  For each iteration, the specific subset  

of minorities that are disadvantaged is varied based on draws from a uniform 

distribution described in step 3.  At the end of these 100 iterations, there will be 

100 streams of both performance measures for five of the six strategies, and 100 

values of both performance measures for the matched pair approach.   

 

Step 7: For each outlier identification strategy, compute the average of the performance  

results across the 100 iterations. 
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Step 8:  Re-run steps 1 through 7 using different likelihood and severity values.  The  

 likelihood values analyzed during the simulation include 5%, 25%, 50%, 75%,  

 and 95%.  The severity values analyzed include 5, 12.5, 25, 37.5, 50, 62.5, 75,  

 87.5, 100, 200, and 300 basis points.  These likelihood and severity values were  

chosen to provide a broad coverage of all possible scenarios.  With five possible 

likelihood values, and 11 possible severity values, 55 total likelihood/severity 

scenarios exist. 

 

V. Monte Carlo Simulation Results 

This section presents the simulation results for each of the six outlier 

identification strategies.  There are two performance measures for each of the 55 

likelihood/severity scenarios, so the volume of results is large.  Because of this, results 

are only presented for the following scenarios: 5/12.5, 5/100, 5/300, 95/12.5, 95/100 and 

95/300.  These results convey the main overall findings from the Monte Carlo 

simulation.19  Both performance measures are presented in graphical form with a success 

rate and inefficiency rate graph for each likelihood/severity scenario. 

 

Success Rate 

  Graphs 1a – 6a show the success rate graphs.  These graphs convey how well 

each strategy performs at identifying disadvantaged applicants.  For each of these graphs, 

the horizontal axis shows all possible sizes for the file review sample, and the vertical 

axis shows the average percentage of disadvantaged files included in the file review 

sample.  Therefore, for a given outlier identification strategy, and a given sample size, the 
                                                           
19 A full set of results is available from the author upon request. 
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graph shows the average percentage of disadvantaged minorities that have been identified 

for review.  Strategies with higher percentages, and percentages that converge faster to 

100 percent are preferable.  For comparison purposes, a line is also presented, which 

shows the optimal scenario of the minority disadvantaged applicants all at the beginning 

of a list of applicants rank ordered by their likelihood of being disadvantaged. 

As an example, look at the results in graph 5a.  With a likelihood rate of 95 

percent, approximately 177 of the 186 minorities in the simulated population are 

disadvantaged for each of the 100 iterations.  The optimal strategy identifies these 177 

applicants first.  Therefore, the optimal line shows that the percentage of disadvantaged 

applicants found converges straight to 100 percent by a file review sample size of 177, 

and equals 100 percent for all remaining sample sizes.  Among the six outlier 

identification strategies, the forward searching strategy shows the poorest performance.  

For a file review sample of 100 applicants, an average of only 35.4 (20 percent) of the 

177 disadvantaged minorities were found.  This compares with the optimal scenario in 

which all 100 applicants are disadvantaged for a percentage of 56.5 (100/177).  Almost 

the entire population of 582 applicants must be included in the file review sample before 

all 177 of the disadvantaged applicants are reviewed.  As previously noted, a stream of 

sample-size results is not available for the matched pair strategy.  Instead, the graph 

shows that matching only on LTV yields an average file review sample size of 475 

applicants with 161 (91 percent) of the disadvantaged applicants found on average.  

Similarly, using the larger set of matching variables yields an average file review sample 

size of 297 applicants with 108 (61 percent) of the disadvantaged applicants found on 

average.  Finally, using the largest set of matching variables yields an average file review 
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sample size of 107 applicants with 41 (23 percent) of the disadvantaged applicants found 

on average. 

There are a number of interesting findings from the Monte Carlo simulation.  

First, no strategy appears optimal across different likelihood and severity levels.  Graphs 

1a and 4a show that for low severity levels, the DFBETA strategy performs best for small 

file review sample sizes, while the tree algorithm performs best for larger sample sizes.  

The switch occurs between 120 and 145 applications.  For larger severity levels, the 

absolute and relative strategies begin to show better performance with the tree algorithm 

still performing well for larger file review sample sizes at a severity of 100 basis points 

and a likelihood of 95 percent.  In general, the forward searching and matched pair 

strategies show the worst performance. 

Second, as expected, there is a positive relationship between severity level and 

performance.  When severity levels are low, all six strategies perform poorly.  For 

example, at a file review sample size of 100 applicants, graph 1a shows that, on average, 

between 1.35 (15 percent) and 3.42 (38 percent) of the nine disadvantaged applicants had 

been identified depending on the outlier identification strategy used.  As severity levels 

increase, performance improves as well as shown by graphs 3a and 6a.  With a severity 

level of 300 basis points and a likelihood of 5 percent, five of the strategies had 

identified, on average, at least 8 of the nine 9 disadvantaged applicants by a file review 

sample size of 100. 

Third, there appears to be no relationship between likelihood of disadvantage and 

performance.  This relationship is a little difficult to see in graphs 1a-6a, because the 

denominators for the percentages shown in the graphs differ.  When the likelihood equals 
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5 percent the denominator is approximately 9, and when the likelihood equals 95 percent 

the denominator is approximately 177.  With this in mind, for small severity levels, the 

success rates are generally low for both likelihood values.  As previously noted, the 

success rates increase as the severity levels increase, but they appear to increase at similar 

rates for both likelihood values. 

Fourth, except for the extreme cases where the severity of disadvantage is large, 

none of the strategies are highly successful at identifying disadvantaged applicants.  For 

example, when the likelihood is 5 percent and the severity is 12.5 basis points, on 

average, between 3.78 (41 percent) and 5.67 (63 percent) of the nine disadvantaged 

applicants had been identified for samples of 250 applicants.  When the likelihood is 95 

percent and the severity is 100 basis points, on average, between 83.17 (43 percent) and 

141.6 (80 percent) of the 177 disadvantaged applicants had been identified for samples of 

250 applicants.  Interestingly, for a severity level of 12.5, all six strategies perform about 

as well as a simple random draw of outliers, which would be indicated by a straight line 

connecting the two ends of the optimal line.  Based on these results, a large file review 

sample size is therefore typically needed for any of the strategies to identify a large 

percentage of the disadvantaged applicants.    

Finally, the number of files needing to be reviewed to draw reliable conclusions 

varies greatly by the severity of disadvantage.  At low levels, significantly more files 

must be reviewed to identify most of the disadvantaged applicants.  The level of severity 

is not known during an exam, so other information, such as the results from the statistical 

analysis, should be used as signals of the severity level to help determine the
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appropriate sample size.  For example, if the statistical results suggest potential 

discrimination, a larger sample of files should be reviewed. 

 

Inefficiency Rate 

Graphs 1b and 2b show the inefficiency rate graphs.  Only two graphs are 

presented, because the success rate graphs contain much of the same information as the 

inefficiency graphs.  For a given file review sample size, as the success rate at finding 

disadvantaged applicants increases, the percentage of applicants reviewed who are not 

disadvantaged decreases.  Therefore, the success and inefficiency rate graphs mirror one 

another.  The primary reason for presenting the inefficiency graphs is to convey more 

directly the degree of inefficiency; something the success rate graphs do not show well.  

For example, suppose for a given file review sample size that a strategy identifies 50 

percent of the disadvantaged applicants.  To determine the inefficiency rate, the total 

number of disadvantaged applicants must be known.  This information can be determined 

from the success rate graphs by multiplying the likelihood percent by 186, the total 

number of minorities in the population.  However, this is a poor method for conveying 

inefficiency rates. 

For both of the inefficiency rate graphs, the horizontal axis shows all possible 

sizes for the file review sample, and the vertical axis shows the average percentage of 

files that are not disadvantaged minorities.  Therefore, for a given outlier identification 

strategy, and a given sample size, the graph shows the average percentage of files in the 

file review sample that are not disadvantaged.  This is a measure of inefficiency and 

wasted resources.  Strategies with lower percentages are preferable.  Again, for 
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comparison purposes, a line is presented, which shows the optimal scenario of the 

minority disadvantaged applicants all being identified first, followed by all other files.   

As an example, look at the results in graph 1b.  With a likelihood rate of 95 

percent, approximately 177 of the 186 minorities in the simulated population are 

disadvantaged for each of the 100 iterations.  The optimal strategy identifies these 177 

applicants first.  Therefore, the optimal line shows that for file review samples with 177 

or fewer applications, the average percentage of applicants who are not disadvantaged in 

these samples equals zero.  After a sample size of 177, all subsequent applicants are not 

disadvantaged, so the optimal line converges to 68.04 percent, which is the total number 

of applicants not disadvantaged divided by the total population size of 582.  Compared 

with the optimal case, each of the outlier identification strategies result in a large 

percentage of the file review sample consisting of applicants who were not 

disadvantaged.  For a file review sample of 50 applicants, the average number of 

applicants who were not disadvantaged ranged from 24 (48 percent) for the DFBETA 

strategy to 45.0 (90 percent) for the Relative strategy.  This suggests considerable 

resource waste as files are being reviewed that need not be reviewed. 

 The primary finding from the inefficiency rate graphs is that a large number of 

applicants not disadvantaged were identified by each of the outlier identification 

strategies.  This suggests significant drain of resources as these files are unnecessarily 

reviewed.  Looking at graph 1b, which shows inefficiency rates for a likelihood of 5 

percent and a severity of 100 basis points, except for small file review sample sizes, the 

percentage of the sample consisting of non-disadvantaged applicants is above 80 
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percent.  Graph 1b shows lower inefficiency rates, but still generally above 50 percent for 

all file review sample sizes. 

 
VI.  Conclusion 

 The file review portion of a fair lending exam provides supporting evidence to the 

statistical analysis and identifies disadvantaged applicants.  The strategy employed to 

identify files for review affects the reliability of conclusions and the cost of the analysis.  

A preferable strategy successfully identifies disadvantaged applicants at a high rate, while 

minimizing the number of files that are not disadvantaged applicants.  A number of 

strategies are available to identify files to review.  However, no study has compared and 

contrasted the performance of those strategies to determine the strategy best suited for 

fair lending exams. 

This study uses Monte Carlo simulation to compare the performance of six outlier 

identification strategies.  The likelihood of being disadvantaged is varied from 5 to 95 

percent, and the severity of disadvantage is varied from 12.5 to 300 basis points.  

Performance is measured by the success at identifying disadvantaged applicants and 

excluding applicants that are not disadvantaged.   

Overall, no strategy revealed itself as the optimal outlier identification strategy.  

Depending on the likelihood/severity scenario, the DFBETA, absolute, relative, and tree 

algorithms all showed stronger performance.  In addition, except in extreme instances, no 

strategy was highly successful at identifying disadvantaged applicants or minimizing 

those that were disadvantaged.  The main message is that more work must be done to 

identify a strategy showing better performance.  This includes exploring variations of the 

six approaches analyzed in this study and testing additional strategies. 
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Given the large volume of results, and the mixed messages of these results, it is 

worthwhile to conjecture which set of results might most reflect reality.  In other words, 

which outlier identification strategy should be used for future fair lending exams?  

Manually reviewing files is resource intensive, so steps are typically taken to minimize 

the number of files reviewed.  This is one of the major advantages of using statistical 

tools on the front end of the analysis.  Manual review of more than 100-150 files implies 

significant resource cost.  This eliminates the tree algorithm, which showed the strongest 

performance in larger file review samples.  The forward searching and matched pair 

analysis strategies generally showed the weakest performance across all 

likelihood/severity scenarios and are ruled out from consideration as well.  The DFBETA 

showed the strongest performance for small severity levels, while the absolute and 

relative strategies performed better as the severity level rose.  Given that the absolute 

strategy has been used historically, and is likely the easiest to understand, that strategy 

should continue to be employed to identify outliers during future fair lending exams.           
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Appendix A: Data Descriptions and Summary Statistics 

Table A1: Description of Variables Used in Analysis 
Variable Description Excluded category 

Noterate Note rate -- 
Retail Retail channel Wholesale channel 
Refi Refinance loan Purchase loans 
Fixrate Fixed rate loan ARMs 
Jumbo Jumbo loan Conforming loans 
Size Loan amount -- 
Cntycat1 Group of counties* All other counties 
Cntycat2 Group of counties All other counties 
Cntycat3 Group of counties All other counties 
Cntycat4 Group of counties All other counties 
Cntycat5 Group of counties All other counties 
Spclpgm Special pricing program Regular pricing 
Male Male Females 
Nohs Neither primary nor co-applicant has more than a high 

school diploma 
Other education levels 

College Either primary or co-applicant has college degree Other education levels 
Edumiss Education data missing Other education levels 
Finoccup Job is related to finance Job unrelated to finance 
Selfemp Self employed Not self-employed 
Income Income -- 
Ownerocc Owner occupied Not owner-occupied 
Tottrade Total number of trade lines -- 
Fndtocls Funds to close -- 
Msnum Market share number -- 
Msvol Market share volume -- 
Numbanks Number of lenders in tract -- 
Fatal Applicant has a fatal characteristic Not fatal 
Dumhdti Housing DTI is above policy cutoff  
Dumdti Back-end DTI is above policy cutoff   
Ltvcomb CLTV -- 
Insufund Insufficient funds to close Sufficient funds to close 
Score1 Custom credit score -- 
Score2 Custom credit score -- 
Score3 Custom credit score -- 
Rapid Rapid processing of application Not rapid application 
Frsttime First time home buyer Not 1st time buyer 
Minority Black or Hispanic White 
* For confidentiality reasons, the specific counties comprising each group cannot be revealed. 
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Table A2: Summary Statistics of Population (582 approved applications) 
Variable Mean St. deviation Minimum Maximum 
Noterate 7.06 1.19 5.00 9.09 
Retail 0.57 0.49 0 1 
Refi 0.39 0.49 0 1 
Fixrate 0.56 0.50 0 1 
Jumbo 0.26 0.44 0 1 
Size 162.27 66.92 16 300 
Cntycat1 0.20 0.40 0 1 
Cntycat2 0.20 0.40 0 1 
Cntycat3 0.25 0.43 0 1 
Cntycat4 0.09 0.28 0 1 
Cntycat5 0.08 0.27 0 1 
Spclpgm 0.26 0.44 0 1 
Male 0.85 0.36 0 1 
Nohs 0.12 0.33 0 1 
College 0.56 0.50 0 1 
Edumiss 0.07 0.25 0 1 
Finoccup 0.05 0.22 0 1 
Selfemp 0.11 0.32 0 1 
Income 74.35 47.08 12 530 
Ownerocc 0.94 0.23 0 1 
Tottrade 25.55 15.05 1 84 
Fndtocls 48,786.07 181,323.29 -143,005.00 3,269,006 
Msnum 7.28 4.08 0 27.83 
Msvol 5.77 4.16 0 39.46 
Numbanks 89.14 34.04 25 219 
Fatal 0.02 0.37 0 1 
Dumhdti 0.27 0.44 0 1 
Dumdti 0.38 0.49 0 1 
Ltvcomb 81.38 16.37 9.90 102 
Insufund 0.17 0.37 0 1 
Score1 2.91 22.09 0 498 
Score2 0.81 5.87 0 102 
Score3 0.11 1.32 0 30 
Rapid 0.25 0.43 0 1 
Frsttime 0.32 0.47 0 1 
Minority 0.32 0.47 0 1 
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