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1 Introduction

Estimation of default probabilities (PD), loss given default (LGD, a fraction) and

exposure at default (EAD) for portfolio segments containing reasonably

homogeneous assets is essential to prudent risk management as well as for

compliance with Basel II rules for banks using the IRB approach to determine

capital requirements (Basel Committee on Banking Supervision (2004)).

Estimation of small probabilities has attracted considerable recent attention; see

Basel Committee on Banking Supervision (2005), Balthazar (2004), BBA, LIBA,

and ISDA (2005),and Pluto and Tasche (2005). The focus of this paper is on

estimation of the default probability for a risk bucket on the basis of historical

information and expert knowledge. Section 2 argues for the probability approach

to uncertainty measurement. The probability approach to default modeling is

uncontroversial, although perhaps the extent of the constraints imposed by the

simple independent Bernoulli model are underappreciated. This model is brie�y

described in Section 3. In section 4 we argue that exactly the same considerations

that lead to the probability approach for defaults should lead to the probability

approach to default probabilities. As an example, we consider describing expert

information in the form of a Beta distribution on the default probability. The

probability approach allows coherent combination of expert and data information

through Bayes Rule, taken up in Section 5. Section 6 considers estimators of PD

based on the probability approach and compares them with alternatives, including

the maximum likelihood estimator (the empirical default fraction) and a recent

suggestion based on the upper endpoint of a con�dence interval of prespeci�ed

coverage.

2 Uncertainty

Uncertainty is best described in terms of probabilities. This thesis can be based

on prediction scoring, avoidance of sure losses in betting, Pareto optimality,

axiomatic development, etc. Important references are De Finetti (1974) and

Savage (1954). These arguments lead to a requirement of coherence. This weak

requirement is just that systems of numbers describing uncertainty will not be

such that another system can beat them in prediction, or that, if used for betting,

they will not admit sure losses. This simple requirement is enough to insure that
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the predictions must combine like probabilities. Thus, let E; F , denote events

(e.g., "asset 2 and only asset 2, defaults"). Let xi be numbers used to quantify the

uncertainty about events. The three properties implied by coherence are: P1:

Convexity: 0 � xi � 1: P2: Additivity: Let x1 refer to the event E and x2 the
event � E. Then x1 + x2 = 1. P3: Multiplication: Let x1 correspond to E, x3 to
F given E, and x4 to E and F . Then x4 = x1x3.

These three properties de�ne a system of probabilities. The probabilities underlie

statistical models. The probability approach to describing and modeling default

uncertainty using statistical models is central to risk management and to the

requirements of Basel II (under the IRB rules). In the case of default modeling,

where measuring and controlling risk is the aim, it is widely accepted that the

probability approach is the correct approach to default uncertainty. The fact that

probabilities combine in accordance with convexity, additivity and multiplication

is central for moving from probabilities of default on an asset, to default rates in a

segment, to rates in a portfolio, and to a default probability for the bank. It is less

well accepted that uncertainty about the unknown default probability can be

usefully modeled in exactly the same way, using a statistical model, for exactly the

same reasons.

3 Uncertain Defaults

The requirement of coherence prescribes relations among the probabilities of

related events, but does not specify what these probabilities are. The usual

approach in statistical modeling is to choose a statistical model that generates all

the relevant probabilities as a function of a small number of parameters. The

simplest and most common probability model for defaults of assets in a

homogeneous segment of a portfolio is the Bernoulli, in which the defaults are

independent across assets and over time, and defaults occur with common

probability �: Note that speci�cation of this model requires expert judgement,

that is, information. We will denote the expert information by e. Let di indicate

whether the ith observation was a default (di = 1) or not (di = 0). The Bernoulli

model for the distribution of di is p(dij�; e) = �di(1� �)1�di. Let
D = fdi; i = 1; :::; ng denote the whole data set and r = r(D) =

P
i di the count of
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defaults. Then the joint distribution of the data is

p(Dj�; e) =
Q
�di(1� �)1�di (3.1)

= �r(1� �)n�r

As a function of � for given data D this is the likelihood function L(�jD; e): Since
this distribution depends on the data D only through r (n is regarded as �xed),

the su¢ ciency principle implies that we can concentrate attention on the

distribution of r

p(rj�; e) =
�
n
r

�
�r(1� �)n�r (3.2)

a Binomial (n; �) distribution. This is a tremendous simpli�cation, since, for �xed

n, there are only a small number of likely defaults r, so analysis can be done for all

likely datasets. The Binomial model is by no means always appropriate and its

use requires judgement. For practical purposes, perhaps the most important

shortcoming is the independence assumption. If there is heterogeneity in the

default probabilities, perhaps due to changing macroeconomic conditions, the

defaults will cluster. When defaults are infrequent, this may be di¢ cult to capture

in a statistical model. Thus, the Binomial speci�cation is best when the sample is

homogeneous and therefore may not be reliable over long periods or when the

"bucket" includes dissimilar assets. The Basel II formula relies on an estimator for

the marginal probability of default and then allows for correlation at a second

stage in the model used to develop the formula for required capital. Direct

treatment of correlation is possible and is proposed by Gossl (2005) and McNeil

and Wendin (2006). These papers use a Bayesian approach to formulate an

hierarchical model for dependence, but do not focus on incorporation of expert

information. Because our emphasis is on the role of expert information, rather

than on re�nement of the likelihood speci�cation, we will focus on the Binomial

model.

4 Uncertain Default Probabilities

Equation 3.2 is a model for describing default probabilities (probabilities for

di¤erent default con�gurations in a portfolio segment), but it is an incomplete

model in that the parameter � remains unspeci�ed. The default probability � is an
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unknown, but that doesn�t mean that nothing is known about its value. In fact,

defaults are widely studied and risk managers, modelers, validators, and

supervisors have detailed knowledge on values of � for particular portfolio

segments. The point is that � is unknown in the same sense that the future

default status of a particular asset is unknown. We have seen how uncertain

defaults can be modeled. The same methods can be used to model the uncertainty

about �. De�ne events Ei relevant to describing the uncertainty about �; for

example E1 = "� < :0001";E2 : "� < :0005; " etc. Uncertainty about values of �

are coherently described by probabilities on these events. We assemble these

probability assessments into a distribution describing the uncertainty about

�; p(�je): Our approach is a classical Bayesian approach as described in Rai¤a and
Schlaifer (1961).

Now, p(�je) can be a quite general speci�cation, re�ecting in general the
assessments of uncertainty in an in�nity of possible events. This is in contrast

with the case of default con�gurations, in which there are only a �nite (though

usually large) number of possible default con�gurations. However, this should not

present an insurmountable problem We are quite willing to model the large

number of probabilities associated with the possible di¤erent default

con�gurations with a simple statistical model; in fact, a 1-parameter model. The

same can be done with the prior speci�cation. We can �t a few probability

assessments by an expert to a suitable functional form and use that distribution to

model prior uncertainty. Of course, as with the likelihood approach, there is some

approximation involved, and care is necessary.

A convenient functional form, is given by the beta distribution

p(�j�; �) = �(�+ �)

�(�)�(�)
���1(1� �)��1 (4.1)

which has mean �=(�+ �); variance ��=((�+ �)2(1 + �+ �)) and mode

(�� 1)=(�+ � � 2). The special case of � = � = 1 is the uniform distribution on

the unit interval. Beta-binomial analysis is described in Rai¤a and Schlaifer

(1961).

As an illustration, consider a segment of loans which might be in the middle of a

bank�s portfolio in terms of risk. These loans might be roughly equivalent to S&P

BBB or Moody�s Baa. The bulk of these loans are to unrated companies and the

bank has done its own rating to assign the loans to risk "buckets." We have
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consulted an experienced industry expert on these assets. The expert puts the

default probability for assets in this portfolio at 0.01 (an expressed median value).

When asked to condition on the probability being less than 0.01, and then

considering the conditional median the expert returned the 25% quantile 0.0075.

The corresponding question returned the 75% point at 0.0125. Thus this expert

reports a rather tight distribution centered on 0.01 and nearly symmetric,

probably re�ecting extensive experience with portfolios active in this risk segment.

We can �t these assessments to a beta distribution, choosing parameters to re�ect

our expert�s information, resulting in � = 6:8 and � = 647. This will be a

su¢ cient representation of expert opinion for the point being made in this paper.

In practice, the elicitation process is extensive. More information would be

extracted from the expert, perhaps wider families of distributions than the beta

would be considered, and there would be some iteration back and forth between

the statistician and the expert.

We use the prior 4.1 to illustrate the approach without introducing conceptually

unnecessary complications. In fact, essentially any distribution could be used. The

important thing is that the distribution accurately re�ects the expert information.

A simple parametric re�nement is to restrict the range, say from [0,1] to [a,b]. A

more general option is to use mixtures of Beta distributions. It can be shown that

any continuous prior on [0,1] can be arbitrarily well approximated by a mixture of

Betas. The convenient functional forms used below may not be available

(depending on the prior), but calculations through direct numerical integration or

through simulation using Markov Chain Monte Carlo (Robert and Casella (2004))

are routine.

5 Inference

Given the distribution p(�je); we can multiply the probabilities in accord with the
multiplication rule to obtain the joint distribution of r, the number of defaults,

and � :

p(r; �je) = p(rj�; e)p(�je)

from which we obtain the marginal (predictive) distribution of r,
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p(rje) =
Z
p(r; �je)d� (5.1)

If the value of the parameter � is of main interest (rather than the number of

defaults) we can divide to obtain the conditional (posterior) distribution of � :

p(�jr; e) = p(rj�; e)p(�je)=p(rje) (5.2)

which is Bayes rule.

Using speci�cations 3.2 in which expert opinion appears in the likelihood

speci�cation and 4.1 in which expert opinion is re�ected in the values of � and �

we �nd for the predictive distribution 5.1

p(rje) = �(r + �)�(n� r + �)�(�+ �)�(n+ 1)
�(r + 1)�(n� r + 1)�(�)�(�)�(n+ �+ �) (5.3)

and for the posterior 5.2

p(�jr; e) = �(�+ � + n)

�(�+ r)�(� + n� r)�
�+r�1(1� �)�+n�r�1 (5.4)

With our example prior distribution for expert opinion the predictive distributions

5.3 of the number of defaults in a portfolio segment of size 100 is plotted in Figure

1.

Figure 1: Predictive Distribution p(rje) for n=100
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A candidate estimator for PD, suitable for plugging into the formulas given by the

Basel committee�s capital model, is

� = E(�jr; e) = (�+ r)=(�+ � + n) (5.5)

We will not spend much e¤ort justifying the use of the mean; except to point out

that the mean is optimal with respect to squared error loss. For any summary

statistic, it is appropriate to report an indicator of its reliability, for example the

standard deviation �� =
p
E(� � E(�jr; e))2:

The posterior distributions for a sample size of 100 with 0,1, and 5 defaults are

plotted in Figure 2. These distributions represent in full the post-data uncertainty

about � given the expert information and likely (and some unlikely) samples.

Figure 2: Posterior Distributions for r=0 (red), r=1 (green) and r=5 (blue).

6 Estimators

We advocate point estimators based on the probability approach. In the examples

tabulated below we focus on the posterior mean 5.5. An alternative estimator in

wide use is the maximum likelihood estimator (MLE) b� = r=n: For large samples
and � well away from the extremes of 0 and 1, the MLE is a very good estimator
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in many applications, since the data evidence can be expected to dominate prior

evidence provided by the expert. That is, the data evidence is accumulated as the

data set increases in size, while the amount of expert evidence is �xed. When that

occurs, the likelihood approach and the probability approach coincide as the

sample becomes large. Thus, the likelihood estimator can be given a slightly

strained probability interpretation. However, for � near zero (the case in

applications we consider) this domination does not occur for any practical sample

size (Kiefer (2006)).

An estimator recently proposed is the con�dence estimator (Pluto and Tasche

(2005)). We consider a simple case of this estimator. The authors give re�nements

including extensions to simultaneous estimation of default probabilities for

di¤erent buckets. Our comments apply equally to these cases. The principle

attractive feature of the con�dence estimator is that it gives a nonzero estimator

in the case of zero observed defaults, a case which is extremely likely to occur in

low-default (probability) portfolio segments. De�ne F(ujr,n) as the probability of
obtaining r or fewer successes in a sequence of n independent Bernoulli trials each

with success probability u. Thus

F (ujr; n) =
rX
i=0

�
n

i

�
ui(1� u)n�i

Then de�ne the estimator for a prespeci�ed number � 2 [0; 1] chosen by the
modeler,

�� = F
�1(�jr; n): (6.1)

For the case r=0, the estimator takes a simple form, �� = 1� �(1=n): A few
comments on this procedure are in order. Although we criticize this estimator on

both fundamentals and performance, it does represent a major advance in

thinking about default probabilities. Speci�cally, it suggests that the unbiased

estimator can be abandoned and that a practical estimator might adjust the

unbiased estimator toward more likely (in this case nonzero) values. One wonders

why it is considered easier to think about realistic values for � than it is to think

about � directly. Pluto and Tasche interpret the choice of � as a speci�cation of

"conservatism." In any case, there does not seem to be a direct probability

interpretation of the estimator ��. Rather, �� is interpreted as that value of � at

which the probability of seeing r or fewer defaults is equal to �: It is di¢ cult to see
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a justi�cation for this approach, other than the appeal of bounding the estimate

away from zero (provided �; a choice parameter for the modeler, is bounded away

from zero). Conservatism, if desired, could be accommodated by using a percentile

estimator based on the posterior distribution - perhaps using a 60% or 70% point.

This calculation is straightforward given the posterior. The resulting estimator

could be greater or lesser than the MLE, so the con�dence estimator cannot be

given this interpretation, although the spirit may be the same. Of course, the

posterior mean has a direct probability interpretation. The maximum likelihood

estimator has an approximate probability interpretation as well as an

interpretation as that value of � which maximizes the probability of seeing the

sample actually observed.

The performance of the alternative estimators is given in Table 1 for n=100 and

all plausible values of the number of realized defaults. Results are given based on

the posterior distribution using our expert�s information; hypothetical information

from an alternative, less con�dent expert with � = 1:5; and � = 150;(this expert

has approximately twice the prior standard deviation as our actual expert); from

the likelihood alone, and the con�dence estimator �0:1:

Table 1: Point Estimates
n r � �lce b� �0:1

100 0 0.0090 0.0060 0 0.0228

100 1 0.0103 0.0099 0.01 0.0383

100 2 0.0117 0.0139 0.02 0.0523

100 3 0.0130 0.0179 0.03 0.0656

100 4 0.0143 0.0219 0.04 0.0783

100 5 0.0157 0.0258 0.05 0.0908
Notes: The posterior mean, the same based on a less con�dent expert, the MLE

and the con�dence estimator.

As expected, the posterior mean for our expert is tightly clustered around the

prior expectation (about 0.0104) for the sample size 100, even with the unlikely

value of 5 defaults. Our hypothetical less-con�dent expert also supplies estimators

which do not seem unreasonable, though of course they are much more sensitive to

sample variation. The MLE re�ects the well-appreciated problem that the

estimator is zero when zero defaults are observed. The con�dence estimator

depends on the user-speci�ed �; the value chosen 0.10, is suggested in Pluto and
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Tasche (2005); the values 0.5, 0.25, 0.05, 0.01 and 0.001 are also considered in that

paper. For comparison, the �� for these values or � and for r=0 are 0.007, 0.014,

0.030, 0.045, and 0.067. The con�dence estimator is often greater than the

alternative estimators and always greater than the MLE, re�ecting what the

proposers call converatism. It is conservative in that it certainly overstates risk

relative to the MLE, and this might be an area of application in which upside

errors are less problematic than downside errors.

Let us confront these estimators with a stress test, in the spirit of the validation

exercises expected of �nancial institutions. See OCC (2000) and OCC (2006).

Table 2 reports the same complement of estimates, now for a sample of size 10 and

a sample of size 1000.

Table 2: Point Estimates, Stress Test
n r � �lce b� �0:1

10 0 0.0102 0.0093 0 0.2057

10 1 0.0118 0.0155 0.1 0.3368

10 2 0.0133 0.0217 0.2 0.4496

1000 0 0.0041 0.0013 0 0.0023

1000 10 0.0102 0.0100 0.01 0.0154

1000 50 0.0343 0.0447 0.05 0.0600
Notes: The posterior mean, the same based on a less con�dent expert, the MLE

and the con�dence estimator.

For the very small sample size the probability estimators both appear reasonable.

The preferred estimator is the one that actually re�ects expert judgement, given

in columns 3 and 4. The MLE is very sensitive to the number of defaults and gives

the estimator zero for zero-default samples. The con�dence estimator is very

conservative for the small sample. For very large samples all estimators work

better, as expected, though the experts pull estimators toward the prior means

while the con�dence estimator is always above the likelihood estimator. The MLE

for r=0 is again a potential problem, but this is a very unlikely sample for n=1000.

Two �nal comments on the con�dence estimator are appropriate. First, consider

an example in which a sample of 100 observations is drawn from a

Binomial(100,0.01) distribution. A zero will be observed with probability 0.366;

the MLE will be zero and �0:1 will be positive. This might be considered desirable,

though our expert might regard the estimate 0.023 (see Table 1) quite surprising.
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It is, after all, more than twice the true value in our example. With probability

0.634, the number of defaults will be positive and the con�dence estimator will

substantially overestimate the true value of the default probability. Second,

consider a model for nondefaults - survival. In our samples with r defaults, there

are n� r survivals. One might consider estimating a survival probability � rather
than the default probability �. Of course, � = 1� �, so the associated prior is
obtained by a simple linear change of variables. In our example, if the prior on �

has parameters (�; �); then the prior on � has parameters (�; �):There is no new

prior information imposed by looking at the singular joint distribution, and there

is no new data information in the distribution of n� r that is not in the
distribution of r. Thus, we would not in practice analyze these probabilities

separately. Clearly, in the probability approach, E(�je) = 1� E(�je) and
E(�jr; e) = 1� E(�jr; e). Since b� = (n� r)=n, we have b� = 1� b� in the likelihood
approach as well. Consider, however, the estimators �0:1 and �0:1(de�ned by

interchanging r and n-r in 6.1). For a sample of size 100 with 5 defaults, we �nd

�0:1 =0.975 and �0:1 =0.091. Referring to our discussion above (Section 2), we see

that as descriptions of the uncertainties regarding defaults, the con�dence

estimators violate property P2, additivity, and hence are incoherent.

7 Conclusion

Expert information is crucial in risk management and speci�cally default

modeling. This information is typically based on a mix of subjective judgement,

related information not speci�cally modeled, and long experience with related

data sets. The expert information appears in the assignment of assets to segments

on the basis of their risk, in the de�nitions of the segments, in the choice of sample

period and in the chosen statistical model. This paper argues that the expert

information on the likely values of the parameters of the risk model should also be

formally incorporated in the analysis.

Any measure of uncertainty should satisfy a reasonable system of properties

known as coherence. The probability approach to modeling defaults is coherent,

widely accepted and uncontroversial. The same justifying arguments imply that

uncertainty about the unknown default rates should be modeled by probabilities.

In the case of default modeling, a parametric model is customary. We use the

same approach to modeling expert information about the unknown parameters -
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using answers to questions about the unknown default rate to �t a parametric

model to the expert�s beliefs. In practice, this procedure is intensive and requires

more e¤ort and expert involvement than that given in our example. With this

probability distribution in hand, updating beliefs with data information entering

through the likelihood function is straightforward using Bayes Rule.

Our examples illustrate the application of the probability approach. We have used

the opinions of an expert on the likely default probabilities for a risk segment in

the middle of a bank�s portfolio. The expert was quite certain about the likely

ranges of the default probability. As a check, we also constructed a hypothetical,

less-con�dent expert and calculated the posterior statistics. The probability

approach is feasible as well as logical. We considered the likelihood approach,

perhaps appropriate for very large samples and risky portfolio segments. As often

noted, that approach gives an estimator of zero for default probabilities in

segments with no defaults in the sample. That value is considered unacceptable.

A recent proposal for estimating positive default probabilities using the upper

endpoint of an approximate con�dence interval for b� with speci�ed coverage is also
examined and is shown to be incoherent.
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